Preliminary Water Quality Management Plan
Bedford Commercial Site ~ TTM 37788

Prepared for Guardian Capital

January 2020

Hunsaker & Associates
Project Specific Water Quality Management Plan
A Template for Projects located within the Santa Ana Watershed Region of Riverside County

Project Title: Bedford Commercial Site

Development No: TPM 37788

Design Review/Case No: Design Review #2

Contact Information:

Prepared for:
GUARDIAN CAPITAL
5780 Fleet Street, Suite 225
Carlsbad, CA 92008
(760) 780-7167

Prepared by:
Hunsaker & Associates Irvine, Inc.
2900 Adams Street; Ste A-15
Riverside, CA 92504
(951) 352-7200

Original Date Prepared: July 19, 2019

Revision Date(s): January 8, 2020

Prepared for Compliance with
Regional Board Order No. **RB-2010-0033**
Template revised June 30, 2016
A Brief Introduction

This Project-Specific WQMP Template for the Santa Ana Region has been prepared to help guide you in documenting compliance for your project. Because this document has been designed to specifically document compliance, you will need to utilize the WQMP Guidance Document as your “how-to” manual to help guide you through this process. Both the Template and Guidance Document go hand-in-hand, and will help facilitate a well prepared Project-Specific WQMP. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.
OWNER'S CERTIFICATION

This Project-Specific Water Quality Management Plan (WQMP) has been prepared for Bedford Marketplace, LLC, by Hunsaker & Associates Irvine, Inc., for the Bedford Marketplace project.

This WQMP is intended to comply with the requirements of The City of Corona which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater BMPs until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP.

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

[Signature]
Owner's Signature

[Printed Name]
Owner's Printed Name

[Date]
1-30-2020

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan meet the requirements of Regional Water Quality Control Board Order No. R8-2010-0033 and any subsequent amendments thereto."

[Signature]
Preparer's Signature

[Printed Name]
Preparer's Printed Name

[Date]
January 8, 2020

[Title/Position]
Engineer

Preparer's Licensure:

[License Number]
NO. 74550

STATE OF CALIFORNIA
CIVIL
Table of Contents

Section A: Project and Site Information... 6
 A.1 Maps and Site Plans .. 7
 A.2 Identify Receiving Waters ... 8
 A.3 Additional Permits/Approvals required for the Project: 8

Section B: Optimize Site Utilization (LID Principles) 9

Section C: Delineate Drainage Management Areas (DMAs) 11

Section D: Implement LID BMPs ... 13
 D.1 Infiltration Applicability ... 13
 D.2 Harvest and Use Assessment ... 14
 D.3 Bioretention and Biotreatment Assessment .. 16
 D.4 Feasibility Assessment Summaries ... 17
 D.5 LID BMP Sizing .. 18

Section E: Alternative Compliance (LID Waiver Program) 19
 E.1 Identify Pollutants of Concern ... 20
 E.2 Stormwater Credits ... 21
 E.3 Sizing Criteria .. 21
 E.4 Treatment Control BMP Selection ... 22

Section F: Hydromodification ... 23
 F.1 Hydrologic Conditions of Concern (HCOC) Analysis 23
 F.2 HCOC Mitigation .. 24

Section G: Source Control BMPs .. 25

Section H: Construction Plan Checklist ... 27

Section I: Operation, Maintenance and Funding ... 28
List of Tables
Table A.1 Identification of Receiving Waters ... 8
Table A.2 Other Applicable Permits ... 8
Table C.1 DMA Classifications .. 11
Table C.2 Type ‘A’, Self-Treating Areas .. 11
Table C.3 Type ‘B’, Self-Retaining Areas .. 11
Table C.4 Type ‘C’, Areas that Drain to Self-Retaining Areas 12
Table C.5 Type ‘D’, Areas Draining to BMPs ... 12
Table D.1 Infiltration Feasibility .. 13
Table D.2 LID Prioritization Summary Matrix .. 17
Table D.3 DCV Calculations for LID BMPs .. 18
Table E.1 Potential Pollutants by Land Use Type .. 20
Table E.2 Water Quality Credits ... 21
Table E.3 Treatment Control BMP Sizing .. 21
Table E.4 Treatment Control BMP Selection ... 22
Table F.1 Hydrologic Conditions of Concern Summary .. 23
Table G.1 Permanent and Operational Source Control Measures 25
Table H.1 Construction Plan Cross-reference .. 27

List of Appendices
Appendix 1: Maps and Site Plans ... 29
Appendix 2: Construction Plans ... 30
Appendix 3: Soils Information ... 31
Appendix 4: Historical Site Conditions .. 32
Appendix 5: LID Infeasibility ... 33
Appendix 6: BMP Design Details ... 34
Appendix 7: Hydromodification ... 35
Appendix 8: Source Control ... 36
Appendix 9: O&M ... 37
Appendix 10: Educational Materials ... - 6 -
Section A: Project and Site Information

Guardian Capital proposes the development of the Bedford Commercial Center, Phase 2 of 3 of underlying TTM 36294, located just southeast of the intersection of Eagle Glen Parkway and Bedford Canyon Road, in the City of Corona, California. Specifically, the project location is bound to the north by Eagle Glen Parkway and residential homes beyond; to the east by Interstate 15; to the south by vacant land; and to the west by Phase 1 and 2.

The Bedford Commercial site consists of three distinct drainage management areas, DMA ‘A’, ‘B’ and ‘C’ and are described as follows:

- DMA ‘A’ is comprised of Lot 8 of Tract 36294 (10.03 acres), and will convey flows to an existing infiltration basin located northeast of the intersection of Hudson House Drive and Bedford Canyon Road. DMA ‘A’ not a part of this WQMP and is included within the approved overall WQMP for Tract 37030. Information contained within this WQMP pertaining to Lot 8 is informational only and in intended to provide a complete hydraulic and water quality picture. Please refer to the approved WQMP for Tract 36294 for additional information. Furthermore, the existing infiltration basin, ‘Basin 1,’ is not a part of this WQMP, and is shown for reference only.
 - The drainage boundary for DMA ‘A’ is intended to follow the property line for Lot 8 of Tract Map 36294. However, the nature of proposed development and the addition of DMA ‘B’ and ‘C’ to the project, ensuring that only Lot 8 is tributary to the existing basin is proving to be impractical. In order to conform with the intent of the original WQMP for Tract 36294, this WQMP will allow the shape of DMA ‘A’ to vary so long as the total area is to remain 10.03 acres. This will ensure that the existing facilities are not overloaded and that water quality objectives are met. The final drainage boundary for the 10.03 acre DMA ‘A’ will be determined during final engineering and will be presented in the Final WQMP for PM 37788.

- DMA ‘B’ comprises the majority of TPM 37788, and will convey flows to a proposed infiltration basin located at the southerly most corner of the site.
 - A gas station is proposed within this DMA. Catch basins in an around the gas station are to be outfitted with inline catch basin inserts (FlexStorm Inlet Filters) designed to catch and retain oils, fossil fuels and hydrocarbons.

- DMA ‘C’ is comprised of the landscaped slope along the easterly project boundary. This drainage area is designed to be self treating.

Development of this site will require the preparation of a new tentative tract map, TPM 37788.

Entrance to the site shall be obtained from Bedford Canyon Road.

The existing site is vacant and in a mass graded condition.

The site’s land use summary is summarized in the following table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Area (AC.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeveloped Commercial Site within Tract 36294</td>
<td>10.03 ac</td>
</tr>
<tr>
<td>Commercial</td>
<td>13.80 ac</td>
</tr>
<tr>
<td>Revegetated Slope - Natural</td>
<td>2.80 ac</td>
</tr>
<tr>
<td>Undeveloped - Natural</td>
<td>1.17 ac</td>
</tr>
<tr>
<td>Total</td>
<td>27.80 ac</td>
</tr>
</tbody>
</table>
PROJECT INFORMATION

Type of Project: Commercial
Planning Area: Arantine Hills Specific Plan
Community Name: Bedford (formerly Arantine Hills)
Development Name: Bedford Commercial Center

PROJECT LOCATION

Project Watershed and Sub-Watershed: Santa Ana River Watershed, Bedford Wash / Temescal Wash sub-watershed
Gross Acres: 27.8 acres
APN(s): 279-240-019, -021 & -033

Map Book and Page No.: MB 456/23-38

PROJECT CHARACTERISTICS

Proposed or Potential Land Use(s): Retail, Gas Station, Hotel
Proposed or Potential SIC Code(s): 5399, 5541, 7011
Area of Impervious Project Footprint (SF): 916,500 s.f. +/-
Total Area of proposed Impervious Surfaces within the Project Footprint (SF)/or Replacement: 0 s.f.

Does the project consist of offsite road improvements? ☐ Y ☒ N
Does the project propose to construct unpaved roads? ☐ Y ☒ N
Is the project part of a larger common plan of development (phased project)? ☒ Y ☐ N

EXISTING SITE CHARACTERISTICS

Total area of existing Impervious Surfaces within the Project limits Footprint (SF): 0 s.f.
Is the project located within any MSHCP Criteria Cell? ☐ Y ☒ N
If so, identify the Cell number: Not in a cell
Are there any natural hydrologic features on the project site? ☒ Y ☐ N
Is a Geotechnical Report attached? ☐ Y ☒ N
If no Geotech. Report, list the NRCS soils type(s) present on the site (A, B, C and/or D):
What is the Water Quality Design Storm Depth for the project? 0.85 inches

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the local vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a minimum, your WQMP Site Plan should include the following:

- Drainage Management Areas
- Proposed Structural BMPs
- Drainage Path
- Drainage Infrastructure, Inlets, Overflows
- Source Control BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Standard Labeling
- BMP Locations (Lat/Long)
Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Co-Permittee plan reviewer must be able to easily analyze your project utilizing this template and its associated site plans and maps.

A.2 Identify Receiving Waters

Using Table A.1 below, list in order of upstream to downstream, the receiving waters that the project site is tributary to. Continue to fill each row with the Receiving Water’s 303(d) listed impairments (if any), designated beneficial uses, and proximity, if any, to a RARE beneficial use. Include a map of the receiving waters in Appendix 1.

<table>
<thead>
<tr>
<th>Receiving Waters</th>
<th>EPA Approved 303(d) List Impairments</th>
<th>Designated Beneficial Uses</th>
<th>Proximity to RARE Beneficial Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedford Canyon Wash</td>
<td>None</td>
<td>None</td>
<td>No RARE designation</td>
</tr>
<tr>
<td>Temescal Creek Reach, Reach 2</td>
<td>None</td>
<td>AGR, IND, GWR, REC 1, REC 2, WARM</td>
<td>No RARE designation</td>
</tr>
<tr>
<td>Temescal Creek, Reach 1</td>
<td>pH</td>
<td>REC1, REC2, WARM, WILD</td>
<td>No RARE designation</td>
</tr>
<tr>
<td>Santa Ana River (Reach 3)</td>
<td>Copper, Lead, Pathogens (Pathogens, Nitrate)</td>
<td>AGR, GWR, REC1, REC2, WARM, WILD, RARE</td>
<td>10 miles</td>
</tr>
<tr>
<td>Prado Dam</td>
<td>Nutrients and Pathogens</td>
<td>AGR, GWR, REC1, REC2, WARM, WILD, RARE, SPWN</td>
<td>10 miles</td>
</tr>
<tr>
<td>Santa Ana River (Reach 2)</td>
<td>Indicator Bacteria</td>
<td>AGR, GWR, REC1, REC2, WARM, WILD, RARE</td>
<td>No RARE designation</td>
</tr>
<tr>
<td>Santa Ana River (Reach 1)</td>
<td>None</td>
<td>REC1, REC2, WARM, WILD</td>
<td>No RARE designation</td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td>None</td>
<td>None</td>
<td>No RARE designation</td>
</tr>
</tbody>
</table>

A.3 Additional Permits/Approvals required for the Project:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Permit Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Department of Fish and Game, 1602 Streambed Alteration Agreement</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>State Water Resources Control Board, Clean Water Act (CWA) Section 401 Water Quality Cert.</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>US Army Corps of Engineers, CWA Section 404 Permit</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion</td>
<td>☐ Y ☒ N</td>
</tr>
<tr>
<td>Statewide Construction General Permit Coverage</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>Statewide Industrial General Permit Coverage</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)</td>
<td>☐ Y ☒ N</td>
</tr>
<tr>
<td>Other (please list in the space below as required)</td>
<td>☒ Y ☐ N</td>
</tr>
<tr>
<td>City of Corona Grading and Building Permits</td>
<td>☒ Y ☐ N</td>
</tr>
</tbody>
</table>

If yes is answered to any of the questions above, the Co-Permittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.
Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section ‘A’ will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, constraints might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. Opportunities might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your LID design and explain your design decisions to others.

The 2010 Santa Ana MS4 Permit further requires that LID Retention BMPs (Infiltration Only or Harvest and Use) be used unless it can be shown that those BMPs are infeasible. Therefore, it is important that your narrative identify and justify if there are any constraints that would prevent the use of those categories of LID BMPs. Similarly, you should also note opportunities that exist which will be utilized during project design. Upon completion of identifying Constraints and Opportunities, include these on your WQMP Site plan in Appendix 1.

Consideration of “highest and best use” of the discharge should also be considered. For example, Lake Elsinore is evaporating faster than runoff from natural precipitation can recharge it. Requiring infiltration of 85% of runoff events for projects tributary to Lake Elsinore would only exacerbate current water quality problems associated with Pollutant concentration due to lake water evaporation. In cases where rainfall events have low potential to recharge Lake Elsinore (i.e. no hydraulic connection between groundwater to Lake Elsinore, or other factors), requiring infiltration of Urban Runoff from projects is counterproductive to the overall watershed goals. Project proponents, in these cases, would be allowed to discharge Urban Runoff, provided they used equally effective filtration-based BMPs.
Site Optimization

The following questions are based upon Section 3.2 of the WQMP Guidance Document. Review of the WQMP Guidance Document will help you determine how best to optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

Did you identify and preserve existing drainage patterns? If so, how? If not, why?

- Yes. Bedford Canyon Wash located along the project’s southerly perimeter will maintain its existing drainage pattern as will the project site, draining from the southwest to northeast.

Did you identify and protect existing vegetation? If so, how? If not, why?

- Existing vegetation was not preserved. The project proposed to import dirt and elevate the entire site approximately 10 feet. The import is needed to ensure that the project will be able to connect to the public utilities within Bedford Canyon Road as well as to ensure adequate drainage towards Bedford Canyon Wash.

Did you identify and preserve natural infiltration capacity? If so, how? If not, why?

- Yes, an infiltration basin is proposed for the project site where infiltration rates are feasible.

Did you identify and minimize impervious area? If so, how? If not, why?

- Yes. The site design meets the minimum standards per the Riverside County LID Handbook and City of Corona requirements.

Did you identify and disperse runoff to adjacent pervious areas? If so, how? If not, why?

- Yes. Impervious areas will drain to pervious landscape areas as depicted on the site plan. When not feasible runoff will be conveyed to the project’s catch basin and storm drain system before being routed to the Infiltration Basin.
Section C: Delineate Drainage Management Areas (DMAs)

Utilizing the procedure in Section 3.3 of the WQMP Guidance Document which discusses the methods of delineating and mapping your project site into individual DMAs, complete Table C.1 below to appropriately categorize the types of classification (e.g., Type A, Type B, etc.) per DMA for your project site. Upon completion of this table, this information will then be used to populate and tabulate the corresponding tables for their respective DMA classifications.

Table C.1 DMA Classifications

<table>
<thead>
<tr>
<th>DMA Name or ID</th>
<th>Surface Type(s)12</th>
<th>Area (Sq. Ft.)</th>
<th>DMA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA ‘A’</td>
<td>Mixed – Commercial (part of approved WQMP for Tr 36294)</td>
<td>420,780 sf.</td>
<td>D</td>
</tr>
<tr>
<td>DMA ‘B’</td>
<td>Mixed – Commercial</td>
<td>602,100 sf.</td>
<td>D</td>
</tr>
<tr>
<td>DMA ‘C’</td>
<td>Landscaped Slopes</td>
<td>122,436 sf.</td>
<td>A</td>
</tr>
</tbody>
</table>

1Reference Table 2-1 in the WQMP Guidance Document to populate this column
2If multi-surface provide back-up

Table C.2 Type ‘A’, Self-Treating Areas

<table>
<thead>
<tr>
<th>DMA Name or ID</th>
<th>Area (Sq. Ft.)</th>
<th>Stabilization Type</th>
<th>Irrigation Type (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA ‘C’</td>
<td>122,436 sf.</td>
<td>Revegetated</td>
<td>Drip</td>
</tr>
</tbody>
</table>

Table C.3 Type ‘B’, Self-Retaining Areas

<table>
<thead>
<tr>
<th>Self-Retaining Area</th>
<th>Type ‘C’ DMAs that are draining to the Self-Retaining Area</th>
<th>Post-project surface type</th>
<th>Area (square feet)</th>
<th>Storm Depth (inches)</th>
<th>DMA Name / ID</th>
<th>[C] from Table C.4 =</th>
<th>Required Retention Depth (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA Name/ID</td>
<td>[A] [B] [C] [D]</td>
<td>[A] [B]</td>
<td>[A]</td>
<td>[B]</td>
<td>[C]</td>
<td>[D]</td>
<td>[D] = [B] + [B] ⋅ [C] / [A]</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[D] = [B] + [B] ⋅ [C] / [A]
<table>
<thead>
<tr>
<th>DMA Name/ID</th>
<th>Area (square feet)</th>
<th>Post-project surface type</th>
<th>Impervious fraction</th>
<th>Product</th>
<th>Receiving Self-Retention DMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[A]</td>
<td>[B]</td>
<td>[C] = [A] x [B]</td>
<td></td>
<td>DMA name /ID</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table C.5 Type ‘D’, Areas Draining to BMPs

<table>
<thead>
<tr>
<th>DMA Name or ID</th>
<th>BMP Name or ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA ‘A’</td>
<td>Existing Infiltration Basin ‘1’ - Tr. 36294</td>
</tr>
<tr>
<td>DMA ‘B’</td>
<td>Proposed Infiltration Basin ‘2’</td>
</tr>
</tbody>
</table>

Note: More than one drainage management area can drain to a single LID BMP, however, one drainage management area may not drain to more than one BMP.
Section D: Implement LID BMPs

D.1 Infiltration Applicability

Is there an approved downstream ‘Highest and Best Use’ for stormwater runoff (see discussion in Chapter 2.4.4 of the WQMP Guidance Document for further details)? □ Y □ N

If yes has been checked, Infiltration BMPs shall not be used for the site; proceed to section D.3

If no, continue working through this section to implement your LID BMPs. It is recommended that you contact your Co-Permittee to verify whether or not your project discharges to an approved downstream ‘Highest and Best Use’ feature.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Co-permittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Co-Permittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the WQMP Guidance Document. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Is this project classified as a small project consistent with the requirements of Chapter 2 of the WQMP Guidance Document? □ Y □ N

Infiltration Feasibility

Table D.1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the WQMP Guidance Document in Chapter 2.4.5. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

<table>
<thead>
<tr>
<th>Does the project site...</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>...have any DMAs with a seasonal high groundwater mark shallower than 10 feet?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>If Yes, list affected DMAs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...have any DMAs located within 100 feet of a water supply well?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>If Yes, list affected DMAs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>If Yes, list affected DMAs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...have measured in-situ infiltration rates of less than 1.6 inches / hour?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>If Yes, list affected DMAs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>If Yes, list affected DMAs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...geotechnical report identify other site-specific factors that would preclude effective and safe infiltration?</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Describe here:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answered “Yes” to any of the questions above for any DMA, Infiltration BMPs should not be used for those DMAs and you should proceed to the assessment for Harvest and Use below.
D.2 Harvest and Use Assessment

Please check what applies:

☐ Reclaimed water will be used for the non-potable water demands for the project.
☐ Downstream water rights may be impacted by Harvest and Use as approved by the Regional Board (verify with the Copermittee).
☒ The Design Capture Volume will be addressed using Infiltration Only BMPs. In such a case, Harvest and Use BMPs are still encouraged, but it would not be required if the Design Capture Volume will be infiltrated or evapotranspired.

If any of the above boxes have been checked, Harvest and Use BMPs need not be assessed for the site. If none of the above criteria applies, follow the steps below to assess the feasibility of irrigation use, toilet use and other non-potable uses (e.g., industrial use).

Irrigation Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for Irrigation Use BMPs on your site:

Step 1: Identify the total area of irrigated landscape on the site, and the type of landscaping used.

Total Area of Irrigated Landscape: N/A
Type of Landscaping (Conservation Design or Active Turf): N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for irrigation use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Cross reference the Design Storm depth for the project site (see Exhibit A of the WQMP Guidance Document) with the left column of Table 2-3 in Chapter 2 to determine the minimum area of Effective Irrigated Area per Tributary Impervious Area (EIATIA).

Enter your EIATIA factor: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum irrigated area that would be required.

Minimum required irrigated area: N/A

Step 5: Determine if harvesting stormwater runoff for irrigation use is feasible for the project by comparing the total area of irrigated landscape (Step 1) to the minimum required irrigated area (Step 4).

<table>
<thead>
<tr>
<th>Minimum required irrigated area (Step 4)</th>
<th>Available Irrigated Landscape (Step 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Toilet Use Feasibility

Complete the following steps to determine the feasibility of harvesting stormwater runoff for toilet flushing uses on your site:

Step 1: Identify the projected total number of daily toilet users during the wet season, and account for any periodic shut downs or other lapses in occupancy:

Projected Number of Daily Toilet Users: N/A
Project Type: N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for toilet use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.

Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-2 in Chapter 2 to determine the minimum number of toilet users per tributary impervious acre (TUTIA).

Enter your TUTIA factor: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of toilet users that would be required.

Minimum number of toilet users: N/A

Step 5: Determine if harvesting stormwater runoff for toilet flushing use is feasible for the project by comparing the Number of Daily Toilet Users (Step 1) to the minimum required number of toilet users (Step 4).

<table>
<thead>
<tr>
<th>Minimum required Toilet Users (Step 4)</th>
<th>Projected number of toilet users (Step 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Other Non-Potable Use Feasibility

Are there other non-potable uses for stormwater runoff on the site (e.g. industrial use)? See Chapter 2 of the Guidance for further information. If yes, describe below. If no, write N/A.

N/A

Step 1: Identify the projected average daily non-potable demand, in gallons per day, during the wet season and accounting for any periodic shut downs or other lapses in occupancy or operation.

Average Daily Demand: N/A

Step 2: Identify the planned total of all impervious areas on the proposed project from which runoff might be feasibly captured and stored for the identified non-potable use. Depending on the configuration of buildings and other impervious areas on the site, you may consider the site as a whole, or parts of the site, to evaluate reasonable scenarios for capturing and storing runoff and directing the stored runoff to the potential use(s) identified in Step 1 above.
Total Area of Impervious Surfaces: N/A

Step 3: Enter the Design Storm depth for the project site (see Exhibit A) into the left column of Table 2-4 in Chapter 2 to determine the minimum demand for non-potable uses per tributary impervious acre.

Enter the factor from Table 2-4: N/A

Step 4: Multiply the unit value obtained from Step 3 by the total of impervious areas from Step 2 to develop the minimum number of gallons per day of non-potable use that would be required.

Minimum required use: N/A

Step 5: Determine if harvesting stormwater runoff for other non-potable use is feasible for the project by comparing the projected average daily use (Step 1) to the minimum required non-potable use (Step 4).

<table>
<thead>
<tr>
<th>Minimum required non-potable use (Step 4)</th>
<th>Projected average daily use (Step 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

If Irrigation, Toilet and Other Use feasibility anticipated demands are less than the applicable minimum values, Harvest and Use BMPs are not required and you should proceed to utilize LID Bioretention and Biotreatment per Section 3.4.2 of the WQMP Guidance Document.

D.3 Bioretention and Biotreatment Assessment

Other LID Bioretention and Biotreatment BMPs as described in Chapter 2.4.7 of the WQMP Guidance Document are feasible on nearly all development sites with sufficient advance planning.

Select one of the following:

☐ LID Bioretention/Biotreatment BMPs will be used for some or all DMAs of the project as noted below in Section D.4 (note the requirements of Section 3.4.2 in the WQMP Guidance Document).

☐ A site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee to discuss this option. Proceed to Section E to document your alternative compliance measures.
D.4 Feasibility Assessment Summaries

From the Infiltration, Harvest and Use, Bioretention and Biotreatment Sections above, complete Table D.2 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

<table>
<thead>
<tr>
<th>DMA Name/ID</th>
<th>LID BMP Hierarchy</th>
<th>No LID (Alternative Compliance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA ‘A’</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>DMA ‘B’</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A gas station is proposed within DMA ‘B’. Therefore, the catch basins in and around the gas station are to be outfitted with inline catch basin inserts (FlexStorm Inlet Filters) designed to catch and retain oils, fossil fuels and hydrocarbons.

For those DMAs where LID BMPs are not feasible, provide a brief narrative below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section E below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

N/A
D.5 LID BMP Sizing

Each LID BMP must be designed to ensure that the Design Capture Volume will be addressed by the selected BMPs. First, calculate the Design Capture Volume for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using a method approved by the Copermitee. Utilize the worksheets found in the LID BMP Design Handbook or consult with your Coppermitee to assist you in correctly sizing your LID BMPs. Complete Table D.3 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

<table>
<thead>
<tr>
<th>DMA Type/ID</th>
<th>DMA (square feet)</th>
<th>Post-Project Surface Type</th>
<th>Effective Impervious Fraction, I_f</th>
<th>DMA Runoff Factor</th>
<th>DMA Areas x Runoff Factor</th>
<th>Enter BMP Name / Identifier Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>[B]</td>
<td>[C]</td>
<td>[A] x [C]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMA ‘B’</td>
<td>602,100</td>
<td>Mixed Surface Types</td>
<td>0.8</td>
<td>0.60</td>
<td>360,836</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A_T = \Sigma[A]$

$\Sigma = [D]$

$[E] = \frac{[D]x[E]}{12}$

$[G]$

| 602,100 sf | 360,836 | 0.85 in | 25,560 cf | 27,000 cf |

[B], [C] is obtained as described in Section 2.3.1 of the WQMP Guidance Document

[E] is obtained from Exhibit A in the WQMP Guidance Document

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6
Section E: Alternative Compliance (LID Waiver Program)

NOT APPLICABLE

LID BMPs are expected to be feasible on virtually all projects. Where LID BMPs have been demonstrated to be infeasible as documented in Section D, other Treatment Control BMPs must be used (subject to LID waiver approval by the Co-permittee). Check one of the following Boxes:

☐ LID Principles and LID BMPs have been incorporated into the site design to fully address all Drainage Management Areas. No alternative compliance measures are required for this project and thus this Section is not required to be completed.

- Or -

☐ The following Drainage Management Areas are unable to be addressed using LID BMPs. A site-specific analysis demonstrating technical infeasibility of LID BMPs has been approved by the Co-Permittee and included in Appendix 5. Additionally, no downstream regional and/or sub-regional LID BMPs exist or are available for use by the project. The following alternative compliance measures on the following pages are being implemented to ensure that any pollutant loads expected to be discharged by not incorporating LID BMPs, are fully mitigated.

N/A
E.1 Identify Pollutants of Concern

Utilizing Table A.1 from Section A above which noted your project’s receiving waters and their associated EPA approved 303(d) listed impairments, cross reference this information with that of your selected Priority Development Project Category in Table E.1 below. If the identified General Pollutant Categories are the same as those listed for your receiving waters, then these will be your Pollutants of Concern and the appropriate box or boxes will be checked on the last row. The purpose of this is to document compliance and to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs.

Table E.1 Potential Pollutants by Land Use Type

<table>
<thead>
<tr>
<th>Priority Development Project Categories and/or Project Features (check those that apply)</th>
<th>General Pollutant Categories</th>
<th>Bacterial Indicators</th>
<th>Metals</th>
<th>Nutrients</th>
<th>Pesticides</th>
<th>Toxic Organic Compounds</th>
<th>Sediments</th>
<th>Trash & Debris</th>
<th>Oil & Grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Detached Residential Development</td>
<td></td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Attached Residential Development</td>
<td></td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P(2)</td>
</tr>
<tr>
<td>□ Commercial/Industrial Development</td>
<td></td>
<td>P(3)</td>
<td>P</td>
<td>P(1)</td>
<td>P(1)</td>
<td>P(5)</td>
<td>P(1)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Automotive Repair Shops</td>
<td></td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>P(4, 5)</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Restaurants (>5,000 ft²)</td>
<td></td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Hillside Development (>5,000 ft²)</td>
<td></td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Parking Lots (>5,000 ft²)</td>
<td></td>
<td>P(6)</td>
<td>P</td>
<td>P(1)</td>
<td>P(1)</td>
<td>P(4)</td>
<td>P(1)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>□ Retail Gasoline Outlets</td>
<td></td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Project Priority Pollutant(s) of Concern: □ □ □ □ □ □ □ □ □

*P = Potential
N = Not Potential

(1) A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected
(2) A potential Pollutant if the project includes uncovered parking areas; otherwise not expected
(3) A potential Pollutant is land use involving animal waste
(4) Specifically petroleum hydrocarbons
(5) Specifically solvents
(6) Bacterial indicators are routinely detected in pavement runoff
E.2 Stormwater Credits

Projects that cannot implement LID BMPs but nevertheless implement smart growth principles are potentially eligible for Stormwater Credits. Utilize Table 3-8 within the WQMP Guidance Document to identify your Project Category and its associated Water Quality Credit. If not applicable, write N/A.

Table E.2 Water Quality Credits

<table>
<thead>
<tr>
<th>Qualifying Project Categories</th>
<th>Credit Percentage (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Percentage \(^1\)

\(^1\)Cannot Exceed 50%

\(^2\)Obtain corresponding data from Table 3-8 in the WQMP Guidance Document

E.3 Sizing Criteria

After you appropriately considered Stormwater Credits for your project, utilize Table E.3 below to appropriately size them to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.2 of the WQMP Guidance Document for further information.

Table E.3 Treatment Control BMP Sizing

<table>
<thead>
<tr>
<th>DMA Type/ID</th>
<th>DMA Area (square feet)</th>
<th>Post-Project Surface Type</th>
<th>Effective Impervious Fraction, (I)</th>
<th>DMA Runoff Factor</th>
<th>DMA Area x DMA Runoff Factor</th>
<th>Design Storm Depth (in)</th>
<th>Minimum Design Capture Volume or Design Flow Rate (cubic feet or cfs)</th>
<th>Total Storm Water Credit % Reduction</th>
<th>Proposed Volume or Flow on Plans (cubic feet or cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>([A])</td>
<td>([B])</td>
<td>([C])</td>
<td>([A] \times [C])</td>
<td>([D] \times [E])</td>
<td>([G])</td>
<td>([F] = \frac{[D] \times [E]}{[G]}) \times (1 - [H]) ([I])</td>
<td>([D] \times [E] \times (1 - [H]))</td>
<td>([G]) \times [H] ([I])</td>
</tr>
</tbody>
</table>

\([B]\), \([C]\) is obtained as described in Section 2.3.1 from the WQMP Guidance Document

\([E]\) is for Flow-Based Treatment Control BMPs \([E] = .2\), for Volume-Based Control Treatment BMPs, \([E]\) obtained from Exhibit A in the WQMP Guidance Document

\([G]\) is for Flow-Based Treatment Control BMPs \([G] = 43,560\), for Volume-Based Control Treatment BMPs, \([G] = 12\)

\([H]\) is from the Total Credit Percentage as Calculated from Table E.2 above

\([I]\) as obtained from a design procedure sheet from the BMP manufacturer and should be included in Appendix 6
E.4 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must have a removal efficiency of a medium or high effectiveness as quantified below:

- **High**: equal to or greater than 80% removal efficiency
- **Medium**: between 40% and 80% removal efficiency

Such removal efficiency documentation (e.g., studies, reports, etc.) as further discussed in Chapter 3.5.2 of the WQMP Guidance Document, must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

<table>
<thead>
<tr>
<th>Selected Treatment Control BMP Name or ID</th>
<th>Priority Pollutant(s) of Concern to Mitigate</th>
<th>Removal Efficiency Percentage</th>
</tr>
</thead>
</table>

1 Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.

2 Cross Reference Table E.1 above to populate this column.

3 As documented in a Co-Permittee Approved Study and provided in Appendix 6.
Section F: Hydromodification

F.1 Hydrologic Conditions of Concern (HCOC) Analysis

Once you have determined that the LID design is adequate to address water quality requirements, you will need to assess if the proposed LID Design may still create a HCOC. Review Chapters 2 and 3 (including Figure 3-7) of the WQMP Guidance Document to determine if your project must mitigate for Hydromodification impacts. If your project meets one of the following criteria which will be indicated by the check boxes below, you do not need to address Hydromodification at this time. However, if the project does not qualify for Exemptions 1, 2 or 3, then additional measures must be added to the design to comply with HCOC criteria. This is discussed in further detail below in Section F.2.

HCOC EXEMPTION 1: The Priority Development Project disturbs less than one acre. The Copermittee has the discretion to require a Project-Specific WQMP to address HCOCs on projects less than one acre on a case by case basis. The disturbed area calculation should include all disturbances associated with larger common plans of development.

Does the project qualify for this HCOC Exemption?
☐ Y ☒ N

If Yes, HCOC criteria do not apply.

HCOC EXEMPTION 2: The volume and time of concentration of storm water runoff for the post-development condition is not significantly different from the pre-development condition for a 2-year return frequency storm (a difference of 5% or less is considered insignificant) using one of the following methods to calculate:

- Riverside County Hydrology Manual
- Technical Release 55 (TR-55): Urban Hydrology for Small Watersheds (NRCS 1986), or derivatives thereof, such as the Santa Barbara Urban Hydrograph Method
- Other methods acceptable to the Co-Permittee

Does the project qualify for this HCOC Exemption?
☐ Y ☒ N

If Yes, report results in Table F.1 below and provide your substantiated hydrologic analysis in Appendix 7.

Table F.1 Hydrologic Conditions of Concern Summary

<table>
<thead>
<tr>
<th></th>
<th>Pre-condition</th>
<th>Post-condition</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Concentration</td>
<td>24.44 min</td>
<td>10.8 min.</td>
<td>-46.6% 13.04 min</td>
</tr>
<tr>
<td>Volume (Cubic Feet)</td>
<td>14,247 cf 0.32 ac-ft</td>
<td>92,806 cf 2.13 ac-ft</td>
<td>651.4% 78,559 cf 1.81 ac-ft</td>
</tr>
</tbody>
</table>

1 Time of concentration is defined as the time after the beginning of the rainfall when all portions of the drainage basin are contributing to flow at the outlet.
HCOC EXEMPTION 3: All downstream conveyance channels to an adequate sump (for example, Prado Dam, Lake Elsinore, Canyon Lake, Santa Ana River, or other lake, reservoir or naturally erosion resistant feature) that will receive runoff from the project are engineered and regularly maintained to ensure design flow capacity; no sensitive stream habitat areas will be adversely affected; or are not identified on the Co-Permittees Hydromodification Susceptibility Maps.

Does the project qualify for this HCOC Exemption? □ Y ☒ N
If Yes, HCOC criteria do not apply and note below which adequate sump applies to this HCOC qualifier:
N/A

F.2 HCOC Mitigation
If none of the above HCOC Exemption Criteria are applicable, HCOC criteria is considered mitigated if they meet one of the following conditions:

a. Additional LID BMPS are implemented onsite or offsite to mitigate potential erosion or habitat impacts as a result of HCOCs. This can be conducted by an evaluation of site-specific conditions utilizing accepted professional methodologies published by entities such as the California Stormwater Quality Association (CASQA), the Southern California Coastal Water Research Project (SCCRWP), or other Co-Permittee approved methodologies for site-specific HCOC analysis.

b. The project is developed consistent with an approved Watershed Action Plan that addresses HCOC in Receiving Waters.

c. Mimicking the pre-development hydrograph with the post-development hydrograph, for a 2-year return frequency storm. Generally, the hydrologic conditions of concern are not significant, if the post-development hydrograph is no more than 10% greater than pre-development hydrograph. In cases where excess volume cannot be infiltrated or captured and reused, discharge from the site must be limited to a flow rate no greater than 110% of the pre-development 2-year peak flow.

Be sure to include all pertinent documentation used in your analysis of the items a, b or c in Appendix 7.

☒ None of the above.

Development impacts will be mitigated by the proposed on-site Infiltration/Detention Basin located in DMA B. As a result, reducing post-project flow rates to less than pre-project flows under all hydrological conditions evaluated, including the County’s Hydromodification criteria by limiting post-project flows discharged from the Project to no greater than 110 percent of the pre-project flows for the 2-year, 24-hour storm event. As this is a Preliminary WQMP, complete BMP design details are not available at this time. Complete design details and routing analysis will be provided within the Final WQMP. Refer to Appendix 7 for pertinent documentation.
Section G: Source Control BMPs

Source control BMPs include permanent, structural features that may be required in your project plans — such as roofs over and berms around trash and recycling areas — and Operational BMPs, such as regular sweeping and “housekeeping”, that must be implemented by the site’s occupant or user. The MEP standard typically requires both types of BMPs. In general, Operational BMPs cannot be substituted for a feasible and effective permanent BMP. Using the Pollutant Sources/Source Control Checklist in Appendix 8, review the following procedure to specify Source Control BMPs for your site:

1. **Identify Pollutant Sources**: Review Column 1 in the Pollutant Sources/Source Control Checklist. Check off the potential sources of Pollutants that apply to your site.

2. **Note Locations on Project-Specific WQMP Exhibit**: Note the corresponding requirements listed in Column 2 of the Pollutant Sources/Source Control Checklist. Show the location of each Pollutant source and each permanent Source Control BMP in your Project-Specific WQMP Exhibit located in Appendix 1.

3. **Prepare a Table and Narrative**: Check off the corresponding requirements listed in Column 3 in the Pollutant Sources/Source Control Checklist. In the left column of Table G.1 below, list each potential source of runoff Pollutants on your site (from those that you checked in the Pollutant Sources/Source Control Checklist). In the middle column, list the corresponding permanent, Structural Source Control BMPs (from Columns 2 and 3 of the Pollutant Sources/Source Control Checklist) used to prevent Pollutants from entering runoff. **Add additional narrative** in this column that explains any special features, materials or methods of construction that will be used to implement these permanent, Structural Source Control BMPs.

4. **Identify Operational Source Control BMPs**: To complete your table, refer once again to the Pollutant Sources/Source Control Checklist. List in the right column of your table the Operational BMPs that should be implemented as long as the anticipated activities continue at the site. Copermittee stormwater ordinances require that applicable Source Control BMPs be implemented; the same BMPs may also be required as a condition of a use permit or other revocable Discretionary Approval for use of the site.

<table>
<thead>
<tr>
<th>Table G.1 Permanent and Operational Source Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Sources of Runoff Pollutants</td>
</tr>
<tr>
<td>On-site storm drain inlets</td>
</tr>
</tbody>
</table>
| **Landscape/Outdoor Pesticide Use** | Preserve, existing native trees, shrubs, and ground cover to the maximum extent possible.
Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution.
Where landscaping areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions.
Consider using pest-resistant plants, especially to hardscape. To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. | Maintain landscaping using minimum or no pesticides.
See applicable operation BMPs in “What you should know for.....Landscaping and Gardening”.
Provide IPM information to new owners, lessees and operators. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pools, spas, ponds, decorative fountains, and other water features.</td>
<td>If the Co-Permittee requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements.</td>
<td>See applicable operational BMPs in “Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain”.</td>
</tr>
<tr>
<td>Vehicle/Equipment Repair and Maintenance</td>
<td>Vehicle repairs shall be kept to those that can be considered “self-contained”. Clean-up methods shall be done by dry methods. Fluids drained from a vehicle should be contained in a recyclable container and turned into a local facility for recycling.</td>
<td>No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinse water from parts cleaning into storm drains.</td>
</tr>
<tr>
<td>Fire Sprinkler Test Water</td>
<td>Fire sprinkler test water shall be drained to the sanitary sewer.</td>
<td>See the note in Fact Sheet SC – 41, “Building and Grounds Maintenance,’ in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com</td>
</tr>
</tbody>
</table>
| **Miscellaneous Drain or Wash Water or Other Sources**
Roofing, gutters, and trim | Avoid roofing, gutters, and trim made of copper or other unprotected metals | Storm drains or to store or deposit materials so as to create a potential discharge to storm drains.” |
Section H: Construction Plan Checklist

Populate Table H.1 below to assist the plan checker in an expeditious review of your project. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

- Final engineering construction plans will be provided with the final WQMP. The Tentative Parcel Map is included in the appendix of this Preliminary WQMP.

- Treatment for DMA ‘A’ is included in the approved WQMP for Tract 36294. Water Quality objectives are being met within the infiltration basing for said Tract 36294.

Table H.1 Construction Plan Cross-reference

<table>
<thead>
<tr>
<th>BMP No. or ID</th>
<th>BMP Identifier and Description</th>
<th>Corresponding Plan Sheet(s)</th>
<th>BMP Location (Lat/Long)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA A</td>
<td>Basin “1”</td>
<td>Rough Grading Plan; Sheets 29-31</td>
<td>LAT: 33°49’4.02”N LONG: 117°31’7.28”W</td>
</tr>
<tr>
<td>DMA B</td>
<td>Basin “2”</td>
<td>TPM</td>
<td>LAT: 33°49’8.85”N LONG: 117°31’4.71”W</td>
</tr>
</tbody>
</table>

Note that the updated table — or Construction Plan WQMP Checklist — is only a reference tool to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. Co-Permittee staff can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.
Section I: Operation, Maintenance and Funding

The Copermittee will periodically verify that Stormwater BMPs on your site are maintained and continue to operate as designed. To make this possible, your Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

1. A means to finance and implement facility maintenance in perpetuity, including replacement cost.
2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized O&M or inspections but will require typical landscape maintenance as noted in Chapter 5, pages 85-86, in the WQMP Guidance. Include a brief description of typical landscape maintenance for these areas.

Your local Co-Permittee will also require that you prepare and submit a detailed Stormwater BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the Stormwater BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a Stormwater BMP Operation and Maintenance Plan are in Chapter 5 of the WQMP Guidance Document.

Maintenance Mechanism:

- Basin 1 = Home Owners’ Association (HOA)
- Basin 2 = Property Owners Association (POA)

Will the proposed BMPs be maintained by a Home Owners’ Association (HOA) or Property Owners Association (POA)?

☑️ Y ☐ N

Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.
Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map
Appendix 2: Construction Plans

Grading and Drainage Plans
Appendix 3: Soils Information

Geotechnical Study and Other Infiltration Testing Data
PROJECT MEMORANDUM

To: Bedford Marketplace, LLC
5780 Fleet Street, Suite 225
Carlsbad, CA 92008
Date: December 4, 2019
Project No.: 19080-01

Attention: Mr. Glen Powles

From: Mr. Kevin Dyekman, CEG 2595

Subject: Updated Infiltration Testing for Proposed Water Quality Basin, Bedford Marketplace, Tracts 37030, 36294, and 37644, Corona, California

In accordance with your requested, LGC Geotechnical, Inc. has prepared this memorandum in order to summarize our updated infiltration testing for the proposed water quality basin, Bedford Marketplace, Tracts 37030, 36294, and 37644, located in Corona, California. The recent infiltration testing was performed in order to confirm the provisional design infiltration rate previously provided in our report dated August 9, 2019.

Based on previous nearby infiltration testing and knowledge of the site soils, a design infiltration rate of 2.0 inches per hour was previously provided for infiltration systems associated with Bedford Marketplace (LGC Geotechnical, 2019). Recent infiltration testing was performed within the location of the proposed water quality basin depicted on the Conceptual Grading Plan (Hunsaker, 2019) in order to confirm the previously provided infiltration rate. The estimation of infiltration rates was performed in general accordance with guidelines set forth by the County of Riverside. The recent infiltration test data is summarized in Table 1 on the following page.
Table 1

Summary of Infiltration Testing December 3, 2019

<table>
<thead>
<tr>
<th>Boring/Infiltration Location</th>
<th>Approx. Depth Below EG (ft)</th>
<th>Infiltration Rate (in/hr.)</th>
<th>Tested</th>
<th>Design*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1C</td>
<td>5</td>
<td>31.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>I-2C</td>
<td>4.8</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>I-3C</td>
<td>5</td>
<td>11.2</td>
<td>3.7</td>
<td></td>
</tr>
</tbody>
</table>

*Includes a minimum factor of safety of 3 from Tested Rate per Table 1 – Infiltration Testing Requirements, County of Riverside Guidelines (2011).

Based on the recent confirmational infiltration testing performed, a design infiltration rate of 2.0 inches per hour is considered suitable for use in the design of the proposed water quality basin.

It should be emphasized that infiltration test results are only representative of the location and depth where they are performed. Varying subsurface conditions may exist outside of the test locations which could alter the calculated infiltration rates indicated above. Infiltration tests are performed using relatively clean water free of particulates, silt, etc.

Should you have any questions regarding this memo, please do not hesitate to contact our office.
January 27, 2015

Subject: Summary of Field Infiltration Testing, Proposed Arantine Hills Residential Development, Tract No. 36294, City of Corona, California

Introduction

In accordance with your request and authorization, LGC Geotechnical, Inc. has prepared this summary of field infiltration testing performed for the proposed basin located in the southeastern portion of the Arantine Hills Residential Development, Tract No. 36294 located in the City of Corona, California (Figure 1 – Site Location Map). The purpose of our study was to perform onsite infiltration testing as it relates to infiltration of future storm water.

Field Infiltration Testing

Field infiltration rate testing was performed in general accordance with guidelines set forth by the County of Riverside (2011). Two approximately 12-foot square areas were excavated to approximately 2 feet above basin design elevations in the northern and southern portions of the proposed infiltration basin (Figure 2 – Infiltration Testing Locations). Subsequent to excavating to the target elevation, three approximately 8 to 12-inch diameter test borings were hand excavated to approximate design basin elevations. The infiltration test borings were pre-soaked in accordance with the County guidelines. Based on the County of Riverside methodology, the tested field infiltration rates, summarized in Table 1, have normalized the three-dimensional flow that occurs within the field test to one-dimensional flow out of the bottom of the boring. The approximate locations of the field infiltration tests are shown on Figure 2 and the infiltration test data is attached.
TABLE 1

Summary of Field Infiltration Testing

<table>
<thead>
<tr>
<th>Boring/Infiltration Location</th>
<th>Approx. Depth Below EG (ft)</th>
<th>Approx. Bottom of Infiltration Test Elevation (ft)</th>
<th>Infiltration Rate (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1B</td>
<td>6</td>
<td>908</td>
<td>7.4</td>
</tr>
<tr>
<td>I-2B</td>
<td>6</td>
<td>908</td>
<td>27.7</td>
</tr>
<tr>
<td>I-3B</td>
<td>4</td>
<td>908</td>
<td>13.9</td>
</tr>
</tbody>
</table>

*Includes factor of safety of 3 from Tested Rate per Table 1 – Infiltration Testing Requirements, County of Riverside Guidelines (2011).

Groundwater

Groundwater was not encountered during the recent excavations for infiltration testing. Groundwater and seepage was also not encountered to the maximum explored depth of approximately 65 feet below existing grade during our previous subsurface evaluation (LGC, 2015a).

Seasonal fluctuations of groundwater elevations should be expected over time. In general, groundwater levels fluctuate with the seasons and local zones of perched groundwater may be present due to local seepage caused by irrigation and/or recent precipitation. Local perched groundwater conditions or surface seepage may develop once site development is completed.

Conclusions and Recommendations

The tested infiltration rates provided in the report are considered a general representation of the infiltration rates at the location of the proposed basin. It is our understanding that a preliminary infiltration rate of approximately 4.0 in/hr was utilized in the design of the proposed basin. It is our opinion that the infiltration rate used in the design adequately represents the site soils and is acceptable from a geotechnical viewpoint. In accordance with Appendix A of the Riverside County – Low Impact Development BMP Design Handbook, a minimum factor of safety of 3 has been applied to the tested rates in this report. It is the purview of the project civil engineer to determine which design infiltration rate should be used and if any additional factors of safety should be applied.

Please note, the testing of infiltration rates is highly dependent upon the materials encountered at the point of testing (i.e. location and depth of testing). Variations from our test results must be expected.
Limitations

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

It should be understood that LGC Geotechnical has relied on the accuracy of documents, verbal information, and other material and information provided by you and other associated parties in preparation of this report. LGC Geotechnical makes no warranties or guarantees as to the accuracy or completeness of information obtained from or compiled by others.

We appreciate this opportunity to be of service. Should you have any questions or concerns regarding this letter, please do not hesitate to contact our office.

Sincerely,

LGC Geotechnical, Inc.

Tim Lawson, CEG 1821, GE 2626
Geotechnical Engineer

KAD/TJL/aca

Attachments: References
Figure 1 – Site Location Map
Figure 2 – Infiltration Test Location Map
Field Infiltration Test Data

Distribution: (5) Addressee (4 wet-signed and 1 electronic)
(1) Hunsaker and Associates (via email)
 Attn: Mr. Doug Staley
(1) CASC Engineering and Consulting (via email)
 Attn: Mr. Glenn Budd
References

Figure 2 - Infiltration Testing Location Map

Approximate Location of Excavation for I-1(B) and I-2(B)

Approximate Location of Excavation for I-3(B)
Project Details

- **Project Name:** Arantine Hills
- **Project Number:** 13208-01
- **Date:** 1/21/2016
- **Boring Number:** I-1(8)

Borehole Dimensions

- **Boring Depth (feet):** 2
- **Boring Diameter (inches):** 9
- **Pipe Diameter (inches):** -

Test Pit Dimensions

- **Pit Depth (feet):**
- **Pit Length (feet):**
- **Pit Breadth (feet):**

Pre-Test (Sandy Soil Criteria)*

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval (min)</th>
<th>Initial Depth to Water (feet)</th>
<th>Final Depth to Water (feet)</th>
<th>Total Change in Water Level (feet)</th>
<th>Greater Than or Equal to 0.5 feet (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7:36</td>
<td>8:01</td>
<td>25.0</td>
<td>0.95</td>
<td>1.56</td>
<td>0.61</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>8:03</td>
<td>8:28</td>
<td>25.0</td>
<td>0.88</td>
<td>1.54</td>
<td>0.66</td>
<td>YES</td>
</tr>
</tbody>
</table>

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight, and then obtain at least twelve measurements per hole over at least six hours (approximately 30 minute intervals) with a precision of at least 0.25 inches.

Main Test Data

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval, Δt (min)</th>
<th>Initial Depth to Water, D_0 (feet)</th>
<th>Final Depth to Water, D_f (feet)</th>
<th>Change in Water Level, ΔD (feet)</th>
<th>Tested Infiltration Rate (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:27</td>
<td>8:37</td>
<td>10.0</td>
<td>0.88</td>
<td>1.37</td>
<td>0.49</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>8:38</td>
<td>8:48</td>
<td>10.0</td>
<td>0.80</td>
<td>1.40</td>
<td>0.6</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>8:49</td>
<td>8:59</td>
<td>10.0</td>
<td>0.90</td>
<td>1.38</td>
<td>0.48</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>9:00</td>
<td>9:10</td>
<td>10.0</td>
<td>0.83</td>
<td>1.39</td>
<td>0.56</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>9:11</td>
<td>9:21</td>
<td>10.0</td>
<td>0.85</td>
<td>1.41</td>
<td>0.56</td>
<td>7.1</td>
</tr>
<tr>
<td>6</td>
<td>9:23</td>
<td>9:33</td>
<td>10.0</td>
<td>0.84</td>
<td>1.42</td>
<td>0.58</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tested Infiltration Rate (not including a factor of safety) 7.4

Sketch

```
```

Notes

```
```
Infiltration Test Data Sheet

LGC Geotechnical, Inc
131 Calle Iglesia Suite 200, San Clemente, CA 92672
tel. (949) 369-6141

Project Name: Arantine Hills
Project Number: 13208-01
Date: 1/21/2016
Boring Number: I-2(B)

Test hole dimensions (if circular)

<table>
<thead>
<tr>
<th>Boring Depth (feet)</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boring Diameter (inches)</td>
<td>10</td>
</tr>
<tr>
<td>Pipe Diameter (inches)</td>
<td>-</td>
</tr>
</tbody>
</table>

*measured at time of test

Test pit dimensions (if rectangular)

Pit Depth (feet):	
Pit Length (feet):	
Pit Breadth (feet):	

Pre-Test (Sandy Soil Criteria)*

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval (min)</th>
<th>Initial Depth to Water (feet)</th>
<th>Final Depth to Water (feet)</th>
<th>Total Change in Water Level (feet)</th>
<th>Greater Than or Equal to 0.5 feet (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7:40</td>
<td>8:05</td>
<td>25.0</td>
<td>0.80</td>
<td>2.50</td>
<td>1.7</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>8:10</td>
<td>8:35</td>
<td>25.0</td>
<td>0.95</td>
<td>2.50</td>
<td>1.55</td>
<td>YES</td>
</tr>
</tbody>
</table>

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight, and then obtain at least twelve All Water Sweeps Away.

Main Test Data

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval, Δt (min)</th>
<th>Initial Depth to Water, D_0 (feet)</th>
<th>Final Depth to Water, D_f(feet)</th>
<th>Change in Water Level, ΔD (feet)</th>
<th>Tested Infiltration Rate (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:30</td>
<td>10:40</td>
<td>10.0</td>
<td>1.55</td>
<td>2.50</td>
<td>0.95</td>
<td>20.9</td>
</tr>
<tr>
<td>2</td>
<td>10:41</td>
<td>10:44</td>
<td>3.0</td>
<td>1.40</td>
<td>2.02</td>
<td>0.62</td>
<td>31.1</td>
</tr>
<tr>
<td>3</td>
<td>10:45</td>
<td>10:48</td>
<td>3.0</td>
<td>1.37</td>
<td>2.00</td>
<td>0.63</td>
<td>30.8</td>
</tr>
<tr>
<td>4</td>
<td>10:49</td>
<td>10:52</td>
<td>3.0</td>
<td>1.40</td>
<td>1.97</td>
<td>0.57</td>
<td>27.9</td>
</tr>
<tr>
<td>5</td>
<td>10:54</td>
<td>10:57</td>
<td>3.0</td>
<td>1.39</td>
<td>2.01</td>
<td>0.62</td>
<td>30.7</td>
</tr>
<tr>
<td>6</td>
<td>10:59</td>
<td>11:02</td>
<td>3.0</td>
<td>1.44</td>
<td>1.99</td>
<td>0.55</td>
<td>27.7</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tested Infiltration Rate (not including a factor of safety): 27.7

Sketch:

Notes:

All Water Swept Away During Pre-Test. Adjusted Observation Time in Order to Achieve More Accurate Rates. All Water Sweeps Away in Under 10 Minutes.
Infiltration Test Data Sheet

Project Name: Arantine Hills
Project Number: 13208-01
Date: 1/21/2016
Boring Number: I-3(B)

Test hole dimensions (if circular)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boring Depth (feet)*</td>
<td>1.8</td>
</tr>
<tr>
<td>Boring Diameter (inches)</td>
<td>12</td>
</tr>
<tr>
<td>Pipe Diameter (inches)</td>
<td>-</td>
</tr>
</tbody>
</table>

*measured at time of test

Test pit dimensions (if rectangular)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit Depth (feet):</td>
<td></td>
</tr>
<tr>
<td>Pit Length (feet):</td>
<td></td>
</tr>
<tr>
<td>Pit Breadth (feet):</td>
<td></td>
</tr>
</tbody>
</table>

Pre-Test (Sandy Soil Criteria)*

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval (min)</th>
<th>Initial Depth to Water (feet)</th>
<th>Final Depth to Water (feet)</th>
<th>Total Change in Water Level (feet)</th>
<th>Greater Than or Equal to 0.5 feet (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11:05</td>
<td>11:30</td>
<td>25.0</td>
<td>0.30</td>
<td>1.80</td>
<td>1.5</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>11:30</td>
<td>11:55</td>
<td>25.0</td>
<td>0.46</td>
<td>1.80</td>
<td>1.34</td>
<td>YES</td>
</tr>
</tbody>
</table>

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight, and then obtain at least twelve.

Main Test Data

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Start Time (24:HR)</th>
<th>Stop Time (24:HR)</th>
<th>Time Interval, Δt (min)</th>
<th>Initial Depth to Water, D_o (feet)</th>
<th>Final Depth to Water, D_f (feet)</th>
<th>Change in Water Level, ΔD (feet)</th>
<th>Tested Infiltration Rate (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11:56</td>
<td>12:06</td>
<td>10.0</td>
<td>0.55</td>
<td>1.80</td>
<td>1.25</td>
<td>25.7</td>
</tr>
<tr>
<td>2</td>
<td>12:07</td>
<td>12:12</td>
<td>5.0</td>
<td>0.40</td>
<td>0.95</td>
<td>0.55</td>
<td>14.4</td>
</tr>
<tr>
<td>3</td>
<td>12:13</td>
<td>12:18</td>
<td>5.0</td>
<td>0.55</td>
<td>1.00</td>
<td>0.45</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>12:21</td>
<td>12:26</td>
<td>5.0</td>
<td>0.60</td>
<td>0.98</td>
<td>0.38</td>
<td>10.9</td>
</tr>
<tr>
<td>5</td>
<td>12:27</td>
<td>12:32</td>
<td>5.0</td>
<td>0.44</td>
<td>0.97</td>
<td>0.53</td>
<td>14.2</td>
</tr>
<tr>
<td>6</td>
<td>12:33</td>
<td>12:38</td>
<td>5.0</td>
<td>0.45</td>
<td>0.95</td>
<td>0.5</td>
<td>13.3</td>
</tr>
<tr>
<td>7</td>
<td>12:39</td>
<td>12:44</td>
<td>5.0</td>
<td>0.44</td>
<td>0.96</td>
<td>0.52</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Tested Infiltration Rate (not including a factor of safety) 13.9

Sketch:

Notes:

All Water Swept Away During Pre-Test. Adjusted Observation Time in Order to Achieve More Accurate Rates. All Water Sweeps Away in Under 10 Minutes.
July 22, 2019

Mr. Glen Powles
Bedford Marketplace, LLC
5780 Fleet Street, Suite 225
Carlsbad, California 92008

Subject: Preliminary Geotechnical Evaluation for Proposed Bedford Marketplace, Tracts 37030, 36294, and 37644, Corona, California

In accordance with your request, LGC Geotechnical, Inc. has prepared this preliminary geotechnical evaluation report for the proposed Bedford Marketplace, Tracts 37030, 36294, and 37644, located in the City of Corona, California. This report summarizes our findings, conclusions, and preliminary recommendations with regards to the proposed development.

If you should have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully,

LGC Geotechnical, Inc.

Tim Lawson, CEG 1821, GE 2626
Geotechnical Engineer

Kevin Dyekman, CEG 2595
Project Geologist

KAD/TJL/amm

Distribution: (1) Addressee (electronic copy)
(3) Hunsaker & Associates (1 electronic & 2 wet-signed copies)
Attn: Paul Huddleston
TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION...2
 1.1 Site Description ..2
 1.2 Background ..2
 1.3 Project Description ...3

2.0 GEOTECHNICAL CONDITIONS...5
 2.1 Regional Geology ..5
 2.2 Site-Specific Geology ..5
 2.2.1 Artificial Fill, Undocumented (Not Mapped) ...5
 2.2.2 Artificial Fill (Symbol - Af) ..5
 2.2.3 Quaternary Alluvium Deposits (Symbol - Qal) ..6
 2.3 Groundwater ..6
 2.4 Seismic Design Criteria ..6
 2.5 Faulting and Seismic Hazards ..7
 2.5.1 Liquefaction and Dynamic Settlement ...8
 2.5.2 Lateral Spreading ...8
 2.6 Landslides ..9
 2.7 Expansion Potential ...9
 2.8 Oversized Material ...9
 2.9 Rippability ..9

3.0 CONCLUSIONS..10

4.0 RECOMMENDATIONS..11
 4.1 Site Earthwork ..11
 4.1.1 Site Preparation ...11
 4.1.2 Removal Depths ..12
 4.1.3 Over-Excavation ...12
 4.1.4 Removal Bottoms and Subgrade Preparation ..13
 4.1.5 Temporary Excavations ..13
 4.1.6 Material for Fill ...14
 4.1.7 Fill Placement and Compaction ...14
 4.1.8 Shrinkage and Bulking ...15
 4.1.9 Trench and Retaining Wall Backfill and Compaction ..16
 4.2 Slope Stability ..16
 4.2.1 Cut Slopes ..16
 4.2.2 Fill Slopes ..17
 4.2.3 Slope Maintenance Guidelines ..17
 4.3 Subdrains ...18
 4.4 Provisional Soil Bearing and Lateral Resistance ...18
 4.5 Lateral Earth Pressures for Retaining Walls ...19
 4.6 Fences and Freestanding Walls ...20
TABLE OF CONTENTS (Cont’d)

4.7 Control of Surface Water and Drainage Control.. 21
4.8 Geotechnical Plan Review... 22
4.9 Geotechnical Observation and Testing ... 22

5.0 LIMITATIONS.. 23

LIST OF TABLES, ILLUSTRATIONS, & APPENDICES

Tables

Table 1 – Seismic Design Parameters (Page 7)
Table 2 – Estimated Shrinkage (Page 15)
Table 3 – Lateral Earth Pressures- Select Onsite Backfill (Page 19)
Table 4 – Summary of Infiltration Testing (Page 21)

Figures

Figure 1 – Site Location Map (Page 4)
Figure 2 – Retaining Wall Backfill Detail (Rear of Text)

Sheets

Sheet 1 – Geotechnical Map (Rear of Text)

Appendices

Appendix A – References
Appendix B – Subsurface Data
Appendix C – Laboratory Summary from Phase 1 Grading
Appendix D – General Earthwork and Grading Specifications for Rough Grading
1.0 INTRODUCTION

1.1 Site Description

The entire Bedford development includes Tracts 37030, 36294, and 37644 and encompasses approximately 275 acres of land at the foothills of the Santa Ana Mountains near the southern boundary of the City of Corona, Riverside County, California. In general, the site is bound by the Eagle Glen Specific Plan development on the north and west, by the existing residential lots to the south, and by Interstate 15 to the east.

Ascending slopes up to approximately 90 feet in height with varying slope ratios ranging from approximately 1.25:1 to 3:1 (horizontal to vertical) are present near the northern boundary of the site. In addition, steep bluffs associated with the Bedford Canyon Wash with varying slope ratios ranging from approximately 1:1 (horizontal to vertical) to near vertical are generally located near the southern boundary of the site. In general, the site can be divided into two basic regions based on topography. The lower-lying Bedford Canyon Wash area in the central and northern portion of the site and the elevated regions above the bluffs in the southern and eastern portions of the site.

The proposed Bedford Marketplace site is located in the lower-lying Bedford Canyon Wash area at the eastern boundary of the Bedford development and includes an additional parcel owned by the Riverside County Transportation Commission (RCTC). The proposed Bedford Marketplace combines the approximately 10-acre Bedford commercial parcel with the 17.85-acre RCTC parcel resulting in an approximately 27.85-acre area for commercial development. In general, Bedford Marketplace is bound by Eagle Glen Parkway/Cajalco Road to the north, Interstate 15 to the east, a flood control channel to the south, and Bedford Canyon Road to the west (Figure 1 – Site Location Map).

1.2 Background

Recommendations regarding remedial grading for the entire Bedford development, previously known as Arantine Hills, were provided by LGC Geotechnical (2014 & 2015). These recommendations were based on mass grading and stockpile plans prepared by CASC (2014 & 2015) and preliminary rough grading plans for Phase 1 prepared by Hunsaker & Associates (2015). Rough grading of Phase 1 began in October 2016 and was essentially completed in May 2017. Subsequent postgrading and construction operations for the backbone streets including Clementine Way, Hudson House Drive, and Bedford Canyon Road have also been completed.

Remedial removals and fill placement for portions of the Bedford Marketplace area were completed as a part of the Phase 1 rough grading operations. This was performed in order to facilitate the construction of backbone utilities, roadways, a basin, and a pump station adjacent to the subject commercial site. In general, remedial removals and fill placement to near design grades were completed for the Bedford commercial area and the RCTC parcel remains undeveloped (Sheet 1 – Geotechnical Map).
1.3 Project Description

The conceptual grading plan (Hunsaker, 2019) indicates relatively shallow cuts and fills with intermediate slopes on the order of approximately 20 feet in height to achieve design grades. Based on our review of the Bedford Marketplace conceptual site plan (MCG, 2019) the development will consist of restaurant and retail buildings, a gas station, a hotel, and associated parking improvements.

The conceptual grading plan prepared by Hunsaker & Associates (2019) is utilized as the base map for our Geotechnical Map (Sheet 1). It is our understanding that the provided grading plan is preliminary and changes to design grades are anticipated. The recommendations provided herein are to be based on the ultimate rough grade design. The rough grading plan should be reviewed by this office in order to verify or adjust the geotechnical recommendations provided herein.
2.0 GEOTECHNICAL CONDITIONS

2.1 Regional Geology

The subject site is located along the northeastern flank of the Santa Ana Mountains, just north of the Elsinore-Temecula basin, within the Peninsular Ranges Geomorphic Province. In this area, the Santa Ana Mountains are composed of a core of metamorphic rocks of the Bedford Canyon Formation with lesser amounts of volcanic rock. Erosion has led to a series of sub-parallel canyons travelling out of the mountains. The material eroded from the mountains has formed a series of coalescing older alluvial fans, also referred to as older alluvial deposits. Subsequently these older fan deposits have been eroded by a series of younger drainage courses. The subject site is located in one of these younger drainages known as the “Bedford Canyon Wash”. Additionally, the Elsinore Fault Zone located at the base of the eastern flank of the Santa Ana Mountains is considered a major active fault zone and is regionally part of the San Andreas Fault system. The San Andreas Fault system distributes right-lateral movement across the North American and Pacific Plates.

2.2 Site-Specific Geology

The majority of the site is located on alluvial deposits of the Bedford Canyon Wash with isolated zones of undocumented artificial fill associated with existing dirt roads from previous site operations. Some areas within the Bedford Marketplace commercial area have been subject to remedial grading resulting in the presence of compacted artificial fill.

2.2.1 Artificial Fill, Undocumented (Not Mapped)

Undocumented fill soils were encountered in localized areas within the subject site. These fill soils are presumed to be related to agricultural activities and the grading of dirt roads throughout the site. Undocumented fill is considered to have variable lateral extents and is anticipated to only extend approximately 2 feet below the existing ground surface. Undocumented fill soils were not mapped.

2.2.2 Artificial Fill (Symbol - Af)

Phase 1 rough grading operations included remedial removals and fill placement to near design grades within the Bedford commercial parcel. As a result, compacted artificial fill is present adjacent to Bedford Canyon Road and the existing detention basin. These fill materials were derived from onsite alluvial soils and consist of a mixture of gravel, sand, and minor amounts of silt and clay. These materials were placed with geotechnical observation and testing provided by LGC Geotechnical and are considered suitable to support proposed structures and/or additional fill soils.
2.2.3 Quaternary Alluvial Deposits (Symbol – Qal)

The alluvial deposits encountered during previous subsurface exploration (Appendix A) and Phase 1 rough grading generally consisted of interbedded layers of predominately sand and gravel with varying amounts of silt, cobbles and minor amounts of clay. Apparent density of these materials generally ranged from medium dense to very dense, increasing in depth. The alluvial deposits are present in the area of the RCTC parcel and are underlying the previously placed artificial fill (Af).

2.3 Groundwater

Groundwater and/or seepage was not encountered during rough grading of Phase 1 or during previous subsurface exploration (Appendix A). Groundwater is not considered to be an issue during site grading and development.

Seasonal fluctuations of groundwater elevations should be expected over time. In general, groundwater levels fluctuate with the seasons and local zones of perched groundwater may be present due to local seepage caused by irrigation and/or recent precipitation. Local perched groundwater conditions or surface seepage may develop once site development is completed.

2.4 Seismic Design Criteria

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2016 California Building Code (CBC). Representative site coordinates of latitude 33.8191 degrees north and longitude -117.5199 degrees west were utilized in our analyses. Please note that these coordinates are considered representative of the site for preliminary planning purposes. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and S_{M1}) and adjusted design spectral response acceleration parameters (S_{DS} and S_{D1}) for Site Class D are provided in Table 1 on the following page.
TABLE 1

Seismic Design Parameters

<table>
<thead>
<tr>
<th>Selected Parameters from 2016 CBC, Section 1613 - Earthquake Loads</th>
<th>Seismic Design Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Class per Chapter 20 of ASCE 7</td>
<td>D</td>
</tr>
<tr>
<td>Risk-Targeted Spectral Acceleration for Short Periods (Sₚ)*</td>
<td>2.352g</td>
</tr>
<tr>
<td>Risk-Targeted Spectral Accelerations for 1-Second Periods (S₁)*</td>
<td>0.918g</td>
</tr>
<tr>
<td>Site Coefficient Fₐ per Table 1613.3.3(1)</td>
<td>1.0</td>
</tr>
<tr>
<td>Site Coefficient Fᵥ per Table 1613.3.3(2)</td>
<td>1.5</td>
</tr>
<tr>
<td>Site Modified Spectral Acceleration for Short Periods (Sₘₛ) for Site Class D [Note: Sₘₛ = FₐSₚ]</td>
<td>2.352</td>
</tr>
<tr>
<td>Site Modified Spectral Acceleration for 1-Second Periods (Sₘ₁) for Site Class D [Note: Sₘ₁ = FᵥS₁]</td>
<td>1.378g</td>
</tr>
<tr>
<td>Design Spectral Acceleration for Short Periods (Sₙₛ) for Site Class D [Note: Sₙₛ = (2/3)Sₘₛ]</td>
<td>1.568g</td>
</tr>
<tr>
<td>Design Spectral Acceleration for 1-Second Periods (Sₙ₁) for Site Class D [Note: Sₙ₁ = (2/3)Sₘ₁]</td>
<td>0.918g</td>
</tr>
<tr>
<td>Mapped Risk Coefficient at 0.2 sec Spectral Response Period, C₅₃ (per ASCE 7)</td>
<td>0.948</td>
</tr>
<tr>
<td>Mapped Risk Coefficient at 1 sec Spectral Response Period, C₅₁ (per ASCE 7)</td>
<td>0.937</td>
</tr>
</tbody>
</table>

*From SEAOC, 2018

Section 1803.5.12 of the 2016 CBC (per Section 11.8.3 of ASCE 7) states that the maximum considered earthquake geometric mean (MCEₖ) Peak Ground Acceleration (PGA) should be used for liquefaction potential. The PGAM for the site is equal to 0.892g.

2.5 Faulting and Seismic Hazards

The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CDMG, 2000). A fault is considered “active” if evidence of surface rupture in Holocene time (the last approximately 11,650 years) is present. The possibility of damage due to ground rupture is considered low since no active faults are known to cross the site.
Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Southern California region, which may affect the site, include ground lurching and shallow ground rupture, soil liquefaction, and dynamic settlement. These secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault and the onsite geology. The closest major active faults that could produce these secondary effects include the Elsinore, San Jacinto, and San Andreas Faults, among others. A discussion of these secondary effects is provided in the following sections.

2.5.1 Liquefaction and Dynamic Settlement

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions coexist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Studies indicate that loose, saturated, near-surface, cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils, and cohesive soils exhibit low to negligible liquefaction potential. In general, cohesive soils are not considered susceptible to liquefaction. Effects of liquefaction on level ground include settlement, sand boils, and bearing capacity failures below structures. Furthermore, dynamic settlement of dry sands can occur as the sand particles tend to settle and densify as a result of a seismic event.

Based on the lack of shallow groundwater (greater than 65 feet below ground surface) and anticipated geotechnical conditions subsequent to rough grading (compacted artificial fill overlying dense alluvial deposits) the potential for liquefaction to impact the site is considered very low.

2.5.2 Lateral Spreading

Lateral spreading is a type of liquefaction induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures.

Due to the low potential for liquefaction, the potential for lateral spreading is considered very low.
2.6 **Landslides**

Review of readily available geologic resources and field observations of the surficial conditions do not indicate the presence of landslides on the site or in the immediate vicinity. In general, the site consists of relatively flat-lying alluvial deposits which are not considered susceptible to landslides, seismically-induced landslides, or other mass wasting processes (debris flows, rockfalls, etc.).

2.7 **Expansion Potential**

Based on the results of previous laboratory testing, site soils are anticipated to have a “Very Low” to “Medium” expansion potential. Final expansion potential of site soils should be determined at the completion of grading. Results of expansion potential testing at finish grades will be utilized to confirm final foundation design.

2.8 **Oversized Material**

Minor amounts of oversized material (material larger than 12 inches in maximum dimension) were encountered during previous subsurface exploration (Appendix A) and Phase 1 rough grading operations. Recommendations for the appropriate handling of oversized material are provided in our General Earthwork & Grading Specifications for Rough Grading (Appendix D).

2.9 **Rippability**

In general, the undocumented fill, artificial fill, and Quaternary Alluvial soils are anticipated to be rippable with heavy equipment (Caterpillar D-9 or equivalent).
3.0 CONCLUSIONS

Based on the results of our knowledge of the subject site, it is our opinion that the proposed improvements are feasible from a geotechnical standpoint, provided that the recommendations contained in the following sections are incorporated during site grading and development. A summary of our geotechnical conclusions are as follows:

- The near-surface onsite soils are not considered suitable for support of the planned development and will need to be removed and replaced with compacted fill materials. Removal recommendations are provided below in Section 4.1.
- Artificial fill soils placed with geotechnical observation and testing provided by LGC Geotechnical and are considered suitable to support proposed structures and/or additional fill soils. Minor reprocessing recommendations for these soils are provided below in Section 4.1.
- Groundwater and/or seepage was not encountered during rough grading of Phase 1 or during previous subsurface evaluations (Appendix A). Groundwater is not considered to be an issue during site grading and development.
- The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults are known to cross the site (CDMG, 2000). Therefore, the possibility of damage due to ground rupture is considered low.
- The main seismic hazard that may affect the site is ground shaking from one of the active regional faults. The subject site will likely experience strong seismic ground shaking during its design life.
- Based on the lack of shallow groundwater (greater than 65 feet below ground surface) and geotechnical conditions subsequent to rough grading (compacted artificial fill overlying dense alluvium) the potential for liquefaction to impact the site is considered very low.
- Review of readily available geologic resources and field observations of the surficial conditions do not indicate the presence of landslides on the site or in the immediate vicinity. Topographically, the site is relatively flat-lying and is not considered susceptible to landslides, seismically-induced landslides, or other mass wasting processes (debris flows, rock falls, etc.).
- Based on the results of laboratory testing, site soils are anticipated to have “Very Low” to “Medium” expansion potential. Final design expansion potential must be determined at the completion of grading operations.
- In general, the undocumented fill, artificial fill, and Quaternary Alluvial soils are anticipated to be rippable with heavy equipment (Caterpillar D-9 or equivalent).
- We anticipate that the onsite soils generated from excavations will be generally suitable for re-use as compacted fill, provided they are relatively free of rocks larger than 12 inches in maximum dimension, construction debris, and significant organic material.
- It is our understanding that the conceptual grading plan (Hunsaker, 2019) is preliminary and changes to design grades are anticipated. The rough grading plan should be reviewed by this office in order to verify or adjust the geotechnical recommendations provided herein.
- Proposed slopes are to be constructed in accordance with recommendations provided herein. Subsequent to construction, the proposed slopes are anticipated to be both grossly and surficially stable.
4.0 RECOMMENDATIONS

The following recommendations are to be considered preliminary and should be confirmed upon completion of grading and earthwork operations. In addition, they should be considered minimal from a geotechnical viewpoint, as there may be more restrictive requirements from the architect, structural engineer, building codes, governing agencies, or the owner.

It should be noted that the following geotechnical recommendations are intended to provide sufficient information to develop the site in general accordance with the 2016 CBC requirements. With regard to the possible occurrence of potentially catastrophic geotechnical hazards such as fault rupture, earthquake-induced landslides, liquefaction, etc. the following geotechnical recommendations should provide adequate protection for the proposed development to the extent required to reduce seismic risk to an “acceptable level.” The “acceptable level” of risk is defined by the California Code of Regulations as “that level that provides reasonable protection of the public safety, though it does not necessarily ensure continued structural integrity and functionality of the project” [Section 3721(a)]. Therefore, repair and remedial work of the proposed improvement may be required after a significant seismic event. With regards to the potential for less significant geologic hazards to the proposed development, the recommendations contained herein are intended as a reasonable protection against the potential damaging effects of geotechnical phenomena such as expansive soils, fill settlement, groundwater seepage, etc. It should be understood, however, that our recommendations are intended to maintain the structural integrity of the proposed development and structures given the site geotechnical conditions but cannot preclude the potential for some cosmetic distress or nuisance issues to develop as a result of the site geotechnical conditions.

The geotechnical recommendations contained herein must be confirmed to be suitable or modified based on the actual as-graded conditions.

4.1 Site Earthwork

Rough grading is anticipated to include remedial earthwork, excavation of cut areas, and placement of compacted fill to design grades. We recommend that earthwork onsite be performed in accordance with the following recommendations, the 2016 CBC/City of Corona requirements, and the General Earthwork and Grading Specifications for Rough Grading included in Appendix D. In case of conflict, the following recommendations shall supersede those included in Appendix D.

4.1.1 Site Preparation

Prior to the grading of areas to receive structural fill or engineered structures, these areas should be cleared of surface obstructions and unsuitable material (such as undocumented fill, colluvium, and topsoil). Vegetation and debris should be removed and properly disposed of onsite. Holes resulting from the removal of buried obstructions, which extend below proposed removal bottoms, should be replaced with suitable compacted fill material.
4.1.2 **Removal Depths**

All unsuitable and potentially compressible materials not removed by design cuts should be excavated to competent materials and replaced with compacted fill soils. In general, this includes all existing undocumented artificial fill, residual soil, and upper portions of the previously placed compacted fill and alluvial deposits. Removals specific to the differing types of soils are summarized below.

Previously Placed Artificial Fill: Portions of the Bedford Marketplace area were partially graded during Phase 1 rough grading operations in order to facilitate the construction of the backbone roadways and improvements. LGC Geotechnical provided observation and testing services during the Phase 1 rough grading operations. Removal bottoms achieved during Phase 1 grading were observed and accepted prior to the placement of compacted fill soils. The previously placed compacted fill (Map Symbol – Af) are considered suitable to support proposed structures and/or additional fill placement. It is recommended that the upper 1-foot of the previously placed fill soils be removed and replaced with compacted fill soils in order to remove any weathered or desiccated materials.

Alluvial Deposits: Alluvial deposits (Map Symbol – Qal) are generally located in the area of the RTC parcel in the eastern portion of the subject site. It is anticipated that the upper approximately 5 feet of the alluvial deposits will be loose, weathered, and/or desiccated and should be removed and replaced with compacted artificial fill soils.

In general, removal depths are estimated to range between approximately 1 to 5 feet below existing grade as outline above. Estimated removal depths are depicted on the Geotechnical Map (Sheet 1). Localized areas of deeper removals should be anticipated during grading. Removal bottoms should be extended laterally in order to support a 1:1 (horizontal to vertical) projection away from proposed structures or improvements. The actual depths and lateral extents of removals will be determined by the geotechnical consultant during grading based on the actual subsurface conditions encountered.

Several methods will be utilized in determining the suitability of the material observed in the removal bottom excavations. Observation of material, proof rolling, probing, and occasional field density testing of the removal bottoms shall be performed by a field technician and/or field geologist to verify removal bottom suitability. When field density test data is utilized for the approval of a removal bottom, an in-place relative compaction of 85 percent or greater and/or a degree of saturation of 85 percent or greater will be considered suitable.

4.1.3 **Over-Excavation**

In order to provide a uniform fill blanket beneath proposed structures, it is recommended that design cut and cut/fill transition pads be over-excavated a minimum of 3 feet below ultimate finish pad grade based on the future rough grading design. A maximum 3:1 differential fill thickness underneath individual lots should be maintained in order to
reduce the potential for future differential settlement. Over-excavation should extend laterally a minimum of 5 feet beyond proposed building footprints.

Streets in design cut areas should be over-excavated a minimum of 2 feet below design subgrade elevations. In addition, retaining wall footings located on cut or a cut/fill transition should be over-excavated a minimum of 2 feet below and 2 feet beyond the edges of the proposed footings.

It is our opinion that utility excavations may be completed utilizing typical heavy machinery. The native soils at the site are generally uncemented alluvial soils (Class “C” per Cal OSHA) and are anticipated to be unstable when excavated vertically, see Section 4.1.5. At the owner's discretion the streets could be overexcavated, such that utility trenches will then be excavated through compacted fill soils. If desired, it is recommended that the street overexcavation extend approximately 2-foot below the lowest utility.

Over-excavations/undercuts must be confirmed and mapped by the geotechnical consultant prior to subsequent fill placement. The actual depth and lateral extents of overexcavation should be determined by the geotechnical consultant during grading based on the actual subsurface conditions encountered. Please note that some estimated removals in the western portion of the site may extend deeper than the recommended overexcavation in order to remove unsuitable materials.

4.1.4 Removal Bottoms and Subgrade Preparation

In general, removal bottoms, over-excavation bottoms, and areas to receive compacted fill should be scarified to a minimum depth of 6 to 8 inches, brought to a near-optimum moisture condition (generally within optimum and 2 percent above optimum moisture content) and re-compacted per project requirements.

Removal bottoms, over-excavation/undercut bottoms, and areas to receive fill should be observed and accepted by the geotechnical consultant prior to fill placement.

4.1.5 Temporary Excavations

Temporary excavations should be performed in accordance with project plans, specifications, and applicable Occupational Safety and Health Administration (OSHA) requirements. Excavations should be laid back or shored in accordance with OSHA requirements before personnel or equipment are allowed to enter. The majority of site alluvial soils are anticipated to be OSHA Type “C” soils. Soil conditions should be regularly evaluated during construction to verify conditions are as anticipated. The contractor shall be responsible for providing the “competent person” required by OSHA standards to evaluate the soil conditions. Close coordination with the geotechnical consultant should be maintained to facilitate construction while providing safe excavations. **Excavation safety is the sole responsibility of the contractor.**

Vehicular traffic, stockpiles, and equipment storage should be set back from the perimeter
of excavations a minimum distance equivalent to a 1:1 projection from the bottom of the excavation or 5 feet, whichever is greater. Once an excavation has been initiated, it should be backfilled as soon as practical. Prolonged exposure of temporary excavations may result in some localized instability. Excavations should be planned so that they are not initiated without sufficient time to shore/fill them prior to weekends, holidays, or forecasted rain.

4.1.6 **Material for Fill**

From a geotechnical perspective, the onsite soils are generally considered suitable for use as general compacted fill, provided they are screened of construction debris, any oversized material (12 inches in greatest dimension), and significant organic content. From a geotechnical perspective, compacted fill with an average organic content less than 2 percent is generally not considered significant. Any oversized material (greater than 12 inches in maximum dimension) encountered must be appropriately handled as outlined in Appendix D.

From a geotechnical viewpoint, any required import soils (excluding retaining wall backfill import) should consist of clean, relatively granular soils of Low expansion potential (expansion index 50 or less based on ASTM D4829) and no particles larger than 3 inches in greatest dimension. Source samples of planned importation should be provided to the geotechnical consultant for laboratory testing a minimum of 10 working days prior to any planned importation.

Retaining wall backfill should consist of sandy soils with a maximum of 35 percent fines (passing the No. 200 sieve) per American Society for Testing and Materials (ASTM) Test Method D1140 (or ASTM D6913/D422) and a Very Low expansion potential (EI of 20 or less per ASTM D4829). Soils should also be screened of organic materials, construction debris, and any material greater than 3 inches in maximum dimension. Portions of the onsite soil may not be suitable for retaining wall backfill due to their fines content (i.e., silt and clay content) and expansion potential. Therefore, either select grading and stockpiling and/or import of suitable soils meeting the criteria outlined above will be required.

Aggregate base should conform to the requirements of Section 200-2 of the Standard Specifications for Public Works Construction ("Greenbook") for untreated base materials, Caltrans Class 2 aggregate base and/or the County of Riverside requirements.

4.1.7 **Fill Placement and Compaction**

Material to be placed as fill should be brought to near optimum moisture content (generally within optimum and 2 percent above optimum moisture content) and compacted to at least 90 percent relative compaction (per ASTM D1557). Moisture conditioning of site soils will be required in order to achieve adequate compaction. Due to the granular nature of the site soils, pre-watering the site prior to grading may be beneficial. The optimum lift thickness to produce a uniformly compacted fill will depend
on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts not exceeding 8 inches in compacted thickness. Each lift should be thoroughly compacted and accepted prior to subsequent lifts. Generally, placement and compaction of fill should be performed in accordance with local grading ordinances with observation and testing performed by the geotechnical consultant.

Fill placed on any slopes greater than 5:1 (horizontal to vertical) inclination should be properly keyed and benched into firm and competent soils as it is placed in lifts. During backfill of temporary excavations, fill should be properly benched into firm and competent soils as it is placed in lifts and compacted.

Slope face compaction must be achieved by the contractor by overfilling the slope face a minimum of 2 feet and cutting back to design finish grades or by other acceptable methods.

Aggregate base material should be compacted to a minimum of 95 percent relative compaction at or slightly above optimum moisture content per ASTM D1557. Subgrade below aggregate base should be compacted to a minimum of 90 percent relative compaction at or slightly above optimum moisture content per ASTM D1557.

4.1.8 Shrinkage and Bulking

Volumetric changes in earth quantities will occur when excavated onsite earth materials are replaced as properly compacted fill. The following is an estimate of shrinkage factors for the various geologic units found onsite. These estimates are based on in-place densities of the various materials and on the estimated average degree of relative compaction that will be achieved during grading.

TABLE 2

Estimated Shrinkage

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Allowance</th>
<th>Estimated Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Fill (Af)</td>
<td>Shrinkage/Bulk</td>
<td>+/- 5%</td>
</tr>
<tr>
<td>Alluvial Deposits (Qal) – Upper 4 Feet</td>
<td>Shrinkage</td>
<td>10 to 15%</td>
</tr>
<tr>
<td>Alluvial Deposits (Qal) – Below 4 Feet</td>
<td>Shrinkage</td>
<td>0 to 10%</td>
</tr>
</tbody>
</table>

Subsidence due to earthwork equipment is expected to be on the order of 0.1-foot. It should be stressed that these values are only estimates and that actual shrinkage factors are extremely difficult to predict. The effective shrinkage of onsite soils will depend primarily on the type of compaction equipment and method of compaction used onsite by the contractor. The above shrinkage estimates are intended as an aid for others in determining preliminary earthwork quantities. However, these estimates should be used
with some caution since they are not absolute values.

If importing/exporting a large volume of soils is not considered feasible or economical, we recommend a balance area be designated onsite that can fluctuate up or down based on the actual volume of soil. We recommend a “balance” area that can accommodate on the order of 5 to 10 percent (plus or minus) of the total grading volume be considered.

Volumetric changes based on quantities from previous grading activities (Phase 1, Channel, etc.) should also be reviewed and taken into consideration.

4.1.9 Trench and Retaining Wall Backfill and Compaction

The onsite soils may generally be suitable as trench backfill, provided the soils are screened of rocks and other material greater than 6 inches in diameter and organic matter. If trenches are shallow or the use of conventional equipment may result in damage to the utilities, sand having a sand equivalent (SE) of 30 or greater (per California Test Method [CTM] 217) may be used to bed and shade the pipes. Sand backfill within the pipe bedding zone may be densified by jetting or flooding and then tamped to ensure adequate compaction. Subsequent trench backfill should be compacted in uniform thin lifts by mechanical means to at least a minimum 90 percent relative compaction (per ASTM D1557). It is our understanding that the upper 3 feet of trench backfill below proposed street subgrade is to be compacted to a minimum 95-percent relative compaction in accordance with requirements set forth by the City of Corona.

Retaining wall backfill should consist of sandy soils as outlined in the preceding Section 4.1.6. The limits of select sandy backfill should extend at minimum ½ the height of the retaining wall or the width of the heel (if applicable), whichever is greater, refer to Figure 2 (rear of text). Retaining wall backfill soils should be compacted in relatively uniform thin lifts to at least 90 percent relative compaction (per ASTM D1557). Jetting or flooding of retaining wall backfill materials should not be permitted.

A representative from LGC Geotechnical should observe and test the backfill to verify compliance with the project recommendations.

4.2 Slope Stability

4.2.1 Cut Slopes

Stabilization fills should be constructed on proposed cut slopes over 5 feet in height in accordance with the detail provided in Appendix D. Keyway widths should be a minimum of 15 feet wide. Keyways should be a minimum of 2 feet deep, determined from the lowest toe-of-slope elevation, and tilted back towards the heel a minimum 2 percent or 1-foot (whichever is greater).

Stabilization fill backcuts should be excavated so that at least a minimum 15-foot fill width
is maintained for the entire height of the stability fill slope. In general, backcuts should be excavated at a maximum 1.5:1 (horizontal to vertical) inclination. Properly outletted back drains should be constructed along stabilization fill backcuts in accordance with the General Earthwork and Grading Specifications for Rough Grading included in Appendix D. Flatter backcut inclinations may be required based on observed conditions during grading. The backcuts should not be initiated prior to forecasted rain or be left open for extended periods of time.

Backcuts and keyway excavations must be geologically mapped by the geotechnical consultant during excavation to confirm the anticipated conditions. If adverse conditions are exposed, additional analysis and/or remediation measures may be required. The grading contractor must trim the backcuts with a slope board to remove loose material to allow for confirmational mapping. Updated and/or revised geotechnical recommendations may be required based on observed conditions.

4.2.2 Fill Slopes

Design fill slopes depicted on the grading study (Hunsaker, 2019) are anticipated to be both grossly and surficially stable as designed provided they are constructed in accordance with the General Earthwork and Grading Specifications for Rough Grading included in Appendix D and properly maintained subsequent to construction (Section 4.2.3). Fill slopes should be constructed with a maximum slope ratio of 2:1 (horizontal to vertical). Slope faces should also be compacted to project recommendations. To improve surficial stability, vegetation specified by the landscape architect should be established on the slope face as soon as it is practical.

4.2.3 Slope Maintenance Guidelines

It is recommended that any graded slopes be planted with groundcover vegetation as soon as practical to protect against erosion by reducing runoff velocity. Deep-rooted vegetation that requires little water and is able to survive local climate conditions should also be established to protect against surficial slumping. Under no circumstances should slopes be allowed to be bare of vegetation. Landscape vegetation must not be “trimmed” to root structures leaving no protection of the slopes. Irrigation levels should be kept to the minimum level necessary to establish healthy plant growth. Slopes must not be overwatered. If automatic sprinklers are used, they must be adjusted during periods of rainfall. A landscape professional must be consulted for landscape recommendations.

A program for the elimination of burrowing animals in both native and graded slope areas must be established to protect slope stability by reducing the potential for surface water to penetrate into the slope face. Continuous erosion control, rodent control, and maintenance are essential to the long-term stability of all slopes. Trenches excavated on a slope face for utility or irrigation lines and/or for any purpose must be properly backfilled and compacted to project recommendations to the slope face. Observation/testing and acceptance by the geotechnical consultant during trench
backfill are recommended. V-ditches should be inspected and cleared of loose soil and/or debris on a routine basis, especially prior to and during the rainy season.

4.3 **Subdrains**

If unanticipated groundwater or areas of potential future groundwater seepage and/or accumulation are encountered during grading subdrain systems may be recommended by the geotechnical consultant. Subdrains are to be properly outletted and connected to a suitable discharge point.

A representative of the project civil engineer should survey the installed subdrains for alignment and grade prior to fill placement above the subdrains. The location and elevations of subdrains and subdrain outlets should be recorded on as-built plans and made available to future homeowners and/or homeowner associations. It is the responsibility of the contractor to locate and protect subdrain outlets prior to the completion of work.

4.4 **Provisional Soil Bearing and Lateral Resistance**

An allowable soil bearing pressure of 2,000 pounds per square foot (psf) may be used for the design of footings having a minimum width of 12 inches and a minimum embedment of 24 inches below lowest adjacent ground surface. This value may be increased by 300 psf for each additional foot of embedment or 100 psf for each additional foot of foundation width to a maximum value of 2,500 psf. In addition, an allowable soil bearing pressure of 1,200 psf may be used for a mat post-tensioned slab a minimum of 6 inches below lowest adjacent grade. These allowable bearing pressures are applicable for level (ground slope equal to or flatter than 5H:1V) conditions only. Bearing values indicated are for total dead loads and frequently applied live loads and may be increased by ⅓ for short duration loading (i.e., wind or seismic loads). These values are presented under the assumption that the soils surrounding the foundation will remain intact. For shallow foundations with less than approximately 24 inches of embedment, we recommend that homeowners be advised not to excavate adjacent to their foundations. In addition, shallow foundations with less than approximately 24 inches of embedment have a greater potential of moisture migrating beneath the slab from outside sources.

In utilizing the above-mentioned allowable bearing capacity and provided our earthwork recommendations are implemented, total foundation settlement due to soil and structural loads is anticipated to be on the order of 2 inches. Differential settlement may be taken as half of the total settlement (i.e., 1-inch over a horizontal span of 40 feet).

Resistance to lateral loads can be provided by friction acting at the base of foundations and by passive earth pressure. For concrete/soil frictional resistance, an allowable coefficient of friction of 0.35 may be assumed with dead-load forces. An allowable passive lateral earth pressure of 300 psf per foot of depth (or pcf) to a maximum of 2,500 psf may be used for the sides of footings poured against properly compacted fill. This passive pressure is applicable for level (ground slope equal to or flatter than 5H:1V) conditions only. The passive pressure may be increased by one-third due to wind or seismic forces. We recommend that the upper foot of passive resistance be neglected if finished grade will not be covered with concrete or asphalt. Frictional resistance and passive pressure may be used in combination without reduction. The
provided allowable passive pressures are based on a factor of safety of 1.5 and may be increased by one-third for short duration seismic loading conditions.

4.5 **Lateral Earth Pressures for Retaining Walls**

Based on our review, retaining walls up to approximately 8 feet in height are planned for the subject site. Lateral earth pressures are provided as equivalent fluid unit weights, in pounds per square foot (psf) per foot of depth or pcf. These values do not contain an appreciable factor of safety, so the retaining wall designer should apply the applicable factors of safety and/or load factors during design. A soil unit weight of 130 pcf may be assumed for calculating the actual weight of soil over the wall footing.

The following lateral pressures presented on Table 3 are for approved onsite soils with a maximum of 35 percent fines (passing the No. 200 sieve) per American Society for Testing and Materials (ASTM) Test Method D1140 (or ASTM D6913/D422) and a Very Low expansion potential (EI of 20 or less per ASTM D4829). The retaining wall designer should clearly indicate on the retaining wall plans that the backfill material is to be approved onsite soils.

TABLE 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Equivalent Fluid Weight (pcf)</th>
<th>Equivalent Fluid Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level Backfill</td>
<td>2:1 Sloping Backfill</td>
</tr>
<tr>
<td>Approved Backfill Material</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>At-Rest</td>
<td>60</td>
<td>93</td>
</tr>
</tbody>
</table>

If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for “active” pressure. If the wall cannot yield under the applied load, the earth pressure will be higher. This would include 90-degree corners of retaining walls. Such walls should be designed for “at-rest.” The equivalent fluid pressure values assume free-draining conditions. If conditions other than those assumed above are anticipated, the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical engineer. We recommend retaining walls be provided with construction joints in order to mitigate cosmetic distress from wall movement.

Surcharge loading effects from any adjacent structures should be evaluated by the retaining wall designer. In general, structural loads within a 1:1 (horizontal to vertical) upward projection from the bottom of the proposed retaining wall footing will surcharge the proposed retaining wall. In addition to the recommended lateral earth pressure, retaining walls adjacent to streets should be designed to resist a uniform lateral pressure of 100 pounds per square foot.
(psf) due to normal street vehicle traffic, if applicable. The retaining wall designer should contact the geotechnical engineer for any required geotechnical input in estimating surcharge loads.

If required, the retaining wall designer may use a seismic lateral earth pressure increment of 14 pcf. This increment should be applied in addition to the provided static lateral earth pressure using a triangular distribution with the resultant acting at H/3 in relation to the base of the retaining structure (where H is the retained height). Per Section 1803.5.12 of the California Building Code (CBC), the seismic earth pressure is applicable to “structures assigned to Seismic Design Category D, E, or F in accordance with Section 1613.” This seismic lateral earth pressure is estimated using the procedure outlined by the Structural Engineers Association of California (Lew, et al, 2010). The provided seismic lateral earth pressure is for a level backfill condition. Due to the sensitivity of seismic earth pressures for sloping conditions, the retaining wall designer should provide the geotechnical engineer with cross sections based on the configuration of the planned retaining walls in order to estimate the specific seismic increment.

Retaining wall structures should be provided with appropriate drainage and appropriately waterproofed. To reduce, but not eliminate, saturation of near surface soils (1-foot) in front of the retaining walls, the perforated subdrain pipe should be located a minimum of 1-foot below lower adjacent (non-retained) pad grade. The outlet pipe should be sloped to drain to a suitable outlet. We do not recommend retaining wall outlet pipes be connected to area drains. If subdrains are connected to area drains, special care and information should be provided to homeowners to maintain these drains. Typical retaining wall drainage is illustrated in Figure 2. It should be noted that the recommended subdrain does not provide protection against seepage through the face of the wall and/or efflorescence. Efflorescence is a white crystalline powder (discoloration) that results when water containing soluble salts migrates over a period of time through the face of a retaining wall and evaporates. If such seepage or efflorescence is undesirable, retaining walls should be waterproofed accordingly to reduce this potential.

4.6 **Fences and Freestanding Walls**

As their name indicates, freestanding walls are those walls not designed to retain soil and/or water. These walls are generally located at the rear or side yard of lots. To reduce the potential for unsightly cracks due to differential settlement, we recommend the inclusion of construction joints at a maximum spacing of 16 feet on-center. This spacing may be altered by the structural engineer based upon the wall reinforcement. If the soil-moisture content below the wall foundation varies significantly, some wall movement should be expected. However, movement is unlikely to cause more than cosmetic distress. Allowable soil bearing values for wall footing design are provided in Section 4.4 above.

4.7 **Subsurface Infiltration**

Recent regulatory changes have occurred that mandate that storm water be infiltrated below grade into subsurface soils rather than collected in a conventional storm drain system. Typically, a combination of methods is implemented to reduce surface water runoff and increase infiltration including; permeable pavements/pavers for roadways and walkways, directing surface water runoff to grass-lined swales, retention areas, and/or drywells, etc.
It should be noted that collecting and concentrating surface water for the purpose of intentionally infiltrating below grade, conflicts with the geotechnical engineering objective of directing surface water away from slopes, structures and other improvements. The geotechnical stability and integrity of a site is reliant upon appropriately handling surface water.

Infiltration rates were previously estimated for the site in the area of the large basin in the southeastern portion of the site (LGC Geotechnical, 2016). Estimation of infiltration rates was performed in general accordance with guidelines set forth by the County of Riverside (2011). The tested infiltration rates are considered representative of the site soils in the southeast portion of the site. These tested infiltration rates do not include any factor of safety but have been normalized to correct the 3-Dimensional flow that occurs within the field test to 1-Dimensional flow out of the bottom of the boring. The approximate infiltration test locations are shown on the Geotechnical Map (Sheet 1) and the infiltration test data is summarized in Table 2 on the following page.

TABLE 4

Summary of Infiltration Testing

<table>
<thead>
<tr>
<th>Boring/Infiltration Location</th>
<th>Approx. Depth Below EG (ft)</th>
<th>Approx. Bottom of Infiltration Test Elevation (ft)</th>
<th>Infiltration Rate (in/hr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tested</td>
</tr>
<tr>
<td>I-1A</td>
<td>9.95</td>
<td>907</td>
<td>3.0</td>
</tr>
<tr>
<td>I-2A</td>
<td>9.85</td>
<td>904</td>
<td>1.0</td>
</tr>
<tr>
<td>I-1B</td>
<td>6</td>
<td>908</td>
<td>7.4</td>
</tr>
<tr>
<td>I-2B</td>
<td>6</td>
<td>908</td>
<td>27.7</td>
</tr>
<tr>
<td>I-3B</td>
<td>4</td>
<td>908</td>
<td>13.9</td>
</tr>
</tbody>
</table>

*Includes a minimum factor of safety of 3 from Tested Rate per Table 1 – Infiltration Testing Requirements, County of Riverside Guidelines (2011).

It should be emphasized that infiltration test results are only representative of the location and depth where they are performed. Varying subsurface conditions may exist outside of the test locations which could alter the calculated infiltration rates indicated above. Infiltration tests are performed using relatively clean water free of particulates, silt, etc.

Based on the previous infiltration testing data and our knowledge of the site soils, it is recommended that a provisional design infiltration rate of 2.0 inches per hour may be utilized for infiltration systems associated with Bedford Marketplace. The recommended infiltration rate provided herein shall be verified prior to construction based on final locations and elevations of proposed infiltration systems.

4.7 Control of Surface Water and Drainage Control
From a geotechnical perspective, we recommend that compacted finished grade soils adjacent to proposed structures be sloped away from the proposed structures and towards an approved drainage device or unobstructed swale. Drainage swales, wherever feasible, should not be constructed within 5 feet of buildings. Where lot and building geometry necessitates that drainage swales be routed closer than 5 feet to structural foundations, we recommend the use of area drains together with drainage swales. Drainage swales used in conjunction with area drains should be designed by the project civil engineer so that a properly constructed and maintained system will prevent ponding within 5 feet of the foundation. Code compliance of grades is not the purview of the geotechnical consultant.

Planters with open bottoms adjacent to buildings should be avoided. Planters should not be designed adjacent to buildings unless provisions for drainage, such as catch basins, liners, and/or area drains, are made. Overwatering must be avoided.

4.8 **Geotechnical Plan Review**

When available, project plans (grading, foundation, etc.) should be reviewed by LGC Geotechnical from a geotechnical viewpoint and updated recommendations shall be provided as necessary. Additional field work may be necessary based on the proposed design.

4.9 **Geotechnical Observation and Testing**

The recommendations provided in this report are based on limited subsurface observations and geotechnical analysis. The interpolated subsurface conditions should be checked in the field during construction by a representative of LGC Geotechnical. Geotechnical observation and testing is required per Section 1705 of the 2016 California Building Code (CBC).

Geotechnical observation and/or testing should be performed by LGC Geotechnical at the following stages:

- During grading (removal bottoms, fill placement, etc.);
- During retaining wall backfill and compaction;
- During utility trench backfill and compaction;
- After presoaking building pad and other concrete-flatwork subgrades, and prior to placement of aggregate base or concrete;
- Preparation of pavement subgrade and placement of aggregate base;
- After building and wall footing excavation and prior to placement of steel reinforcement and/or concrete; and
- When any unusual soil conditions are encountered during any construction operation subsequent to issuance of this report.
5.0 LIMITATIONS

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

This report is based on data obtained from limited observations of the site, which have been extrapolated to characterize the site. While the scope of services performed is considered suitable to adequately characterize the site geotechnical conditions relative to the proposed development, no practical evaluation can completely eliminate uncertainty regarding the anticipated geotechnical conditions in connection with a subject site. Variations may exist and conditions not observed or described in this report may be encountered during grading and construction.

This report is issued with the understanding that it is the responsibility of the owner, or of his/her representative, to ensure that the information and recommendations contained herein are brought to the attention of the other consultants (at a minimum the civil engineer, structural engineer, landscape architect) and incorporated into their plans. The contractor should properly implement the recommendations during construction and notify the owner if they consider any of the recommendations presented herein to be unsafe, or unsuitable.

The findings of this report are valid as of the present date. However, changes in the conditions of a site can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. The findings, conclusions, and recommendations presented in this report can be relied upon only if LGC Geotechnical has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. This report is intended exclusively for use by the client, any use of or reliance on this report by a third party shall be at such party's sole risk.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification.
4 INCH DIAMETER, SCHEDULE 40 PERFORATED PVC PIPE TO FLOW TO DRAINAGE DEVICE PER PROJECT CIVIL ENGINEER

SAND BACKFILL
(Expansion Index ≤ 20, Maximum 35% Finest)

MINIMUM 1 CUBIC FOOT PER LINEAR FOOT BURRITO TYPE SUBDRAIN, CONSISTING OF 3/4 INCH CRUSHED ROCK WRAPPED IN MIRAFI 140N OR APPROVED EQUIVALENT

FOOTING/WALL PER DESIGN ENGINEER

NOTE:
PLACEMENT OF SUBDRAIN AT BASE OF WALL WILL NOT PREVENT SATURATION OF SOILS BELOW AND / OR IN FRONT OF WALL

FIGURE 2
Retaining Wall Backfill Detail
(Approved On-Site or Imported Sand Backfill)
Appendix A
References
APPENDIX A

References

American Concrete Institute, 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).

California Department of Conservation, Division of Mines and Geology, 1997, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CDMG Special Publication 117.

Structural Engineers Association of California (SEAOC), 2019, Seismic Design Maps, Retrieved June 18, 2019, from https://seismicmaps.org/
Appendix B
Subsurface Data
From LOR, 2002
APPENDIX B
FIELD INVESTIGATION

Subsurface Exploration

The site was investigated on January 31, February 1, 4 through 7, and 14 of 2002 and consisted of excavating a total of 31 trenches to depths between 4.5 to 15.0 feet below the existing ground surface and advancing a total of 23 borings to depths between 24.0 and 51.1 feet below the existing ground surface. The approximate locations of the trenches and borings are shown on Enclosures A-7 and A-8, within Appendix A.

The exploration was conducted using a FORD 555 E backhoe with a 24-inch bucket. The soil encountered were continuously logged by a geologist from this firm who visually observed the site, maintained detailed logs of the trenches, obtained disturbed soil samples for laboratory evaluation and testing, and classified the soils encountered by visual examination in accordance with the Unified Soil Classification System.

In-place density determinations were conducted at selected levels, within the trenches utilizing the Nuclear Gauge Method (ASTM D 2922). Disturbed soil samples were obtained at soil changes and other selected levels within the trenches. The samples were placed in sealed containers for transport to the laboratory.

The exploration was conducted using a CME-55 drill rig equipped with an 8-inch diameter hollow stem auger. The soils were continuously logged by a geologist from this firm who inspected the site, maintained detailed logs of the borings, obtained undisturbed, as well as disturbed, soil samples for evaluation and testing, and classified the soils by visual examination in accordance with the Unified Soil Classification System.

Relatively undisturbed samples of the subsoils were obtained at a maximum interval of 5 feet. The samples were recovered by using a California split barrel sampler of 2.50 inch inside diameter and 3.00 inch outside diameter from the ground surface to 35 feet deep. The samplers were driven by a 140 pound automatic trip hammer dropped from a height of 30 inches. The number of hammer blows required to drive the sampler into the ground the final 12 inches were recorded and further converted to an equivalent SPT N-value. Factors such as efficiency of the automatic trip hammer used during this investigation (80%), borehole diameter (8"), and rod length at the test depth were considered for further computing of equivalent SPT N-values corrected for
field procedures (N60) which are included in the boring logs, Enclosures B-1 through B-23.

The undisturbed soil samples were retained in brass sample rings of 2.42 inches in diameter and 1.00 inch in height, and placed in sealed plastic containers. Disturbed soil samples were obtained at selected levels within the borings and placed in sealed containers for transport to the laboratory.

All samples obtained were taken to our laboratory for storage and testing. Detailed logs of the trenches and borings are presented on the enclosed Trench and Boring Logs, Enclosures B-1 through B-54. A Sampling Key is presented on Enclosure B.
<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>EQUIVALENT SPT BLOW COUNTS</th>
<th>MOISTURE CONTENT (%)</th>
<th>DRY DENSITY (PCF)</th>
<th>SAMPLE TYPE</th>
<th>LITHOLOGY</th>
<th>US.C.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>5.2</td>
<td></td>
<td>SM</td>
<td>TOPSOIL/FERTILIZER 2 inches thick</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>3.7</td>
<td>102.0</td>
<td>SM</td>
<td>Alluvium: Silty Sand with gravel, approximately 15% angular gravel to 2", 10% coarse grained sand, 15% medium grained sand, 30% fine grained sand, 30% silty fines, dark brown, damp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9.2</td>
<td>113.1</td>
<td></td>
<td>Alluvium: Silty Sand with gravel, approximately 15% angular gravel to 2", 15% coarse grained sand, 20% medium grained sand, 30% fine grained sand, 20% silty fines, grayish brown, damp</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>8.1</td>
<td>92.7</td>
<td></td>
<td>10 feet becomes finer grained, approximately 70% fine grained sand, 30% silty fines, dark brown, damp</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2.8</td>
<td>121.2</td>
<td></td>
<td>15 feet becomes coarser grained, approximately 20% fine gravel, 10% coarse grained sand, 20% medium grained sand, 35% fine grained sand, 15% silty fines, brown, damp</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.6</td>
<td>115.8</td>
<td></td>
<td>END OF BORING DUE TO REFUSAL ON BOULDER</td>
<td></td>
</tr>
</tbody>
</table>

No fill
No caving
No groundwater
No bedrock

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities
PROJECT NUMBER: 31558.1
ELEVATION: 904
DATE DRILLED: January 31, 2002
EQUIPMENT: CME 55
HOLE DIA.: 8" ENCLOSURE: B-1
LOG OF BORING B-18

DESCRIPTION

SM FILL: SILTY SAND, approximately 5% fine gravel, 10% coarse grained sand, 15% medium grained sand, 35% fine grained sand, 35% silty fines, brown, damp, loose.

SM @ 3 feet ALLUVIUM: SILTY SAND, approximately 5% fine subrounded gravel, 15% coarse grained sand, 20% medium grained sand, 30% fine grained sand, 30% silty fines, dark brown, damp.

@ 10 feet becomes finer grained, approximately 10% coarse grained sand, 15% medium grained sand, 40% fine grained sand, 35% silty fines, brown, damp.

@ 11 feet very difficult drilling on cobbles or gravel.

@ 20 feet becomes coarser grained, approximately 10% fine gravel, 15% coarse grained sand, 30% medium grained sand, 20% fine grained sand, 25% silty fines, brown, damp.

@ 22 feet very difficult drilling on gravel and/or cobbles.

END OF BORING DUE TO SLOW PROGRESS

Fill 0-3'
No caving
No groundwater
No bedrock

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities
PROJECT NUMBER: 31558.1
ELEVATION: 921
DATE DRILLED: February 14, 2002
EQUIPMENT: CME 55
HOLE DIA.: 8" ENCLOSURE: B-18

LOR GEOTECHNICAL GROUP INC.
LOG OF BORING B-19

<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>EQUIVALENT SPT BLOW COUNTS</th>
<th>MOISTURE CONTENT (%)</th>
<th>DRY DENSITY (pcf)</th>
<th>SAMPLE TYPE</th>
<th>LITHOLOGY</th>
<th>U.S.C.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>5.0</td>
<td></td>
<td>Y</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5.7</td>
<td>108.7</td>
<td></td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3.4</td>
<td>112.1</td>
<td></td>
<td>@ 4 feet AALLUVIUM: SILTY SAND with gravel, approximately 20% gravel to 1 inch, 10% coarse grained sand, 15% medium grained sand, 30% fine grained sand, 25% silty fines, brown, damp.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4.1</td>
<td>120.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>4.8</td>
<td>118.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>3.4</td>
<td>124.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>3.5</td>
<td>127.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

SM FILL: SILTY SAND, approximately 10% very fine gravel, 10% medium grained sand, 45% fine grained sand, 35% silty fines, brown, loose, damp.

SM @ 4 feet AALLUVIUM: SILTY SAND with gravel, approximately 20% gravel to 1 inch, 10% coarse grained sand, 15% medium grained sand, 30% fine grained sand, 25% silty fines, brown, damp.

END OF BORING

Fill 0-4'
No caving
No groundwater
No bedrock

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities
PROJECT NUMBER: 31558.1
ELEVATION: 892
DATE DRILLED: February 14, 2002
EQUIPMENT: CME 55
HOLE DIA.: 8" **ENCLOSURE:** B-19
<table>
<thead>
<tr>
<th>DEPTH IN FEET</th>
<th>TEST DATA</th>
<th>LOG OF TRENCH T-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Fill: Silty sand, approximately 5% gravel to 1/2", 10% coarse grained sand, 30% medium grained sand, 30% fine grained sand, 25% silty fines, dark brown, moist, loose.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>@ 1 foot Alluvium: Silty sand, trace gravel to 1/2", approximately 5% coarse grained sand, 10% medium grained sand, 50% fine grained sand, 35% silty fines, dark brown, moist, roots.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>@ 3 feet approximately 20% gravel to 1", 20% coarse grained sand, 20% medium grained sand, 25% fine grained sand, 15% silty fines, dark brown, moist. @ 3.5 feet trace cobbles to 10".</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Sandy silty, trace gravel to 1", trace coarse grained sand, approximately 5% medium grained sand, 40% fine grained sand, 55% silty fines with trace clay of low plasticity, dark brown, moist.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5 feet Sandy silty, trace gravel to 1", trace coarse grained sand, approximately 5% medium grained sand, 40% fine grained sand, 55% silty fines with trace clay of low plasticity, dark brown, moist.</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>@ 11 feet occasional cobbles to 5".</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>@ 13 feet Silty sand, approximately 20% gravel to 2", 20% coarse grained sand, 30% medium grained sand, 10% fine grained sand, 20% silty fines, red brown, moist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>END OF TRENCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fill 0-1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No caving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No groundwater</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No bedrock</td>
</tr>
</tbody>
</table>

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities

PROJECT NUMBER: 31558.1
ELEVATION: 916
DATE EXCAVATED: February 4, 2002
EQUIPMENT: Ford 555E
BUCKET W.: 24" ENCLOSURE: B-24
LOG OF TRENCH T-2

DESCRIPTION

FILL: SILTY SAND with gravel, approximately 10% gravel to 1", 10% coarse grained sand, 15% medium grained sand, 35% fine grained sand, 30% silty fines, brown, moist, loose.

@ 1 foot ALLUVIUM: WELL GRADED SAND with gravel, approximately 15% gravel to 6", 20% coarse grained sand, 30% medium grained sand, 5% silty fines, brown, moist.

@ 4 feet approximately 5% gravel to 1", 35% coarse grained sand, 35% medium grained sand, 20% fine grained sand, 55% silty fines, brown, moist.

@ 5 feet occasional cobble to 10".

END OF TRENCH

Fill 0-1'
No caving
No groundwater
No bedrock

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities
PROJECT NUMBER: 31558.1
ELEVATION: 914
DATE EXCAVATED: February 4, 2002
EQUIPMENT: Ford 555E
BUCKET W.: 24"
ENCLOSURE: B-25

LOREGEOTECHNICAL GROUP INC.
LOG OF TRENCH T-3

DESCRIPTION

FILL: SILTY SAND with trace clay, approximately 5% coarse grained sand, 15% medium grained sand, 45% fine grained sand, 35% silty fines with trace clay of low plasticity, brown, moist, loose.

ALLUVIUM: WELL GRADED SAND with silt, approximately 10% gravel to 1", 30% coarse grained sand, 35% medium grained sand, 20% fine grained sand, 10% silty fines, brown, moist.

@ 5 feet occasional cobble to 10".

@ 7 feet approximately 30% gravel to 10", 25% coarse grained sand, 25% medium grained sand, 20% fine grained sand, 5% silty fines, brown, moist.

END OF TRENCH

Fill 0-1.5'
No caving
No groundwater
No bedrock

PROJECT: 500+ Acres in Bedford Canyon, Corona, CA
CLIENT: Bluestone Communities
PROJECT NUMBER: 31558.1
ELEVATION: 896
DATE EXCAVATED: February 4, 2002
EQUIPMENT: Ford 555E
BUCKET W.: 24" ENCLOSURE: B-26

LOR GEOTECHNICAL GROUP INC.
Appendix C
Laboratory Summary from Phase 1 Grading
APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the site soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

Laboratory Compaction: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557. The results of these tests are presented in the table below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Maximum Dry Density (pcf)</th>
<th>Optimum Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red-Brown Silty, Clayey Sand w/ Gravel</td>
<td>137.0</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>Red-Brown Silty, Clayey Sand w/ Gravel</td>
<td>134.5</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>Dark Brown Silty Gravel w/ Sand</td>
<td>152.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>Brown Silty Sand w/ Gravel</td>
<td>133.5</td>
<td>8.0</td>
</tr>
<tr>
<td>5</td>
<td>Dark Brown Silty, Clayey Sand w/ Gravel</td>
<td>140.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>Dark Brown Clayey Sand w/ Gravel</td>
<td>142.0</td>
<td>6.0</td>
</tr>
<tr>
<td>8A</td>
<td>Gravelly Sand (30% Rock)</td>
<td>144.0</td>
<td>6.0</td>
</tr>
<tr>
<td>8B</td>
<td>Gravelly Sand (35% Rock)</td>
<td>146.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8C</td>
<td>Gravelly Sand (40% Rock)</td>
<td>147.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8D</td>
<td>Gravelly Sand (45% Rock)</td>
<td>149.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Expansion Index: The expansion potential of selected samples was evaluated by the Expansion Index Test, Standard ASTM D4829. Specimens are molded under a given compactive energy to approximately the optimum moisture content and approximately 50 percent saturation or approximately 90 percent relative compaction. The prepared 1-inch-thick by 4-inch-diameter specimens are loaded to an equivalent 144 psf surcharge and are inundated with tap water until volumetric equilibrium is reached. The results of these tests are presented in the table below.

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Sample Number</th>
<th>Expansion Index</th>
<th>Expansion Potential*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near “A” Street</td>
<td>EI-1</td>
<td>58</td>
<td>Medium</td>
</tr>
<tr>
<td>Central Fill</td>
<td>EI-2</td>
<td>1</td>
<td>Very Low</td>
</tr>
<tr>
<td>Near “C” Street</td>
<td>EI-3</td>
<td>7</td>
<td>Very Low</td>
</tr>
<tr>
<td>Central Fill</td>
<td>EI-4</td>
<td>0</td>
<td>Very Low</td>
</tr>
<tr>
<td>Central Fill</td>
<td>EI-5</td>
<td>8</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

* ASTM D4829
Appendix D
General Earthwork and Grading Specifications for Rough Grading
General Earthwork and Grading Specifications for Rough Grading

1.0 General

1.1 Intent

These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).

1.2 The Geotechnical Consultant of Record

Prior to commencement of work, the owner shall employ a qualified Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to confirm that the attained level of compaction is being accomplished as specified. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

1.3 The Earthwork Contractor

The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the project plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of “equipment” of work and the estimated quantities of daily earthwork.
contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate personnel will be available for observation and testing. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. It is the contractor’s sole responsibility to provide proper fill compaction.

2.0 Preparation of Areas to be Filled

2.1 Clearing and Grubbing

Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. The contractor is responsible for all hazardous waste relating to his work. The Geotechnical Consultant does not have expertise in this area. If hazardous waste is a concern, then the Client should acquire the services of a qualified environmental assessor.

2.2 Processing

Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be over-excavated as specified in the following section. Scarification shall continue until soils are broken down and free of oversize material and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction.
2.3 **Over-excavation**

In addition to removals and over-excavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be over-excavated to competent ground as evaluated by the Geotechnical Consultant during grading.

2.4 **Benching**

Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise over-excavated to provide a flat subgrade for the fill.

2.5 **Evaluation/Acceptance of Fill Areas**

All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.

3.0 **Fill Material**

3.1 **General**

Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.

3.2 **Oversize**

Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
3.3 Import

If importing of fill material is required for grading, proposed import material shall meet the requirements of the geotechnical consultant. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 Fill Placement and Compaction

4.1 Fill Layers

Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.

4.2 Fill Moisture Conditioning

Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557).

4.3 Compaction of Fill

After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.

4.4 Compaction of Fill Slopes

In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557.

4.5 Compaction Testing

Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
4.6 **Frequency of Compaction Testing**

Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.

4.7 **Compaction Test Locations**

The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 **Subdrain Installation**

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 **Excavation**

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 **Trench Backfills**

7.1 The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations.

7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over
the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.

7.3 The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.

7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.

7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.
Fill Slope

1:1 Projection To Competent Material

Proposed Grade

Natural Ground

Compacted Fill

Removal Zone of Unsuitable Materials

Greater of 2% Slope or 1 Foot Tilt Back

2’ Min.

15’ Min. Key Width

4’ Typical

8’ Typical

Fill-Over-Cut Slope

Natural Grade

Proposed Grade

Removal Zone of Unsuitable Materials

Compacted Fill

Competent Material

4’ Typical

Width Varies

8’ Typical

* Construct Cut Slope First

Greater of 2% Slope or 1 Foot Tilt Back

2’ Min.

15’ Min. Key Width

Cut-Over-Fill Slope

Natural Ground

Overbuild and Trim Back

Proposed Grade

Compacted Fill

Cut Face

Unsuitable Materials

Competent Material

1:1 Projection to Competent Material

2’ Min.

Greater of 2% Slope or 1 Foot Tilt Back

15’ Min. Key Width

Note: Natural Slopes Steeper Than 5:1 (H:V) Must Be Benched.

KEYING AND BENCHING
TYPICAL BUTTRESS DETAIL
TYPICAL STABILIZATION
FILL DETAIL
Cut Lot
(Exposing Unsuitable Soils at Design Grade)

Note 1: Removal Bottom Should be Graded
With Minimum 2% Fall Towards Street or
Other Suitable Area (as Determined by
Soils Engineer) to Avoid Ponding Below
Building

Note 2: Where Design Cut Lots are
Excavated Entirely Into Competent
Material, Overexcavation May Still be
Required for Hard-Rock Conditions or for
Materials With Variable Expansion
Characteristics.

Cut/Fill Transition Lot

Note 1: Removal Bottom Should be Graded
With Minimum 2% Fall Towards Street or
Other Suitable Area (as Determined by
Soils Engineer) to Avoid Ponding Below
Building

Note 2: Where Design Cut Lots are
Excavated Entirely Into Competent
Material, Overexcavation May Still be
Required for Hard-Rock Conditions or for
Materials With Variable Expansion
Characteristics.

*Deeper if Specified by Soils Engineer

CUT AND TRANSITION LOT OVEREXCAVATION DETAIL
Notes:
1) Continuous Runs in Excess of 500' Shall Use 8" Diameter Pipe.
2) Final 20' of Pipe at Outlet Shall be Solid and Backfilled with Fine-grained Material.

Proposed Outlet Detail

CANYON SUBDRAINS
PLACE CONCRETE 6" BELOW FINISH GRADE

PLACE CONTINUOUS ROW OF SAND BAGS AROUND MONUMENT

CREATE PRECISE LOCATION FOR SURVEY READING (INDENT OR SMOOTHED TOP)

CONCRETE BACKFILL

FILL WITH ONSITE SOIL TO DRAIN AWAY FROM MONUMENT, SOIL TO BE LIGHTLY TAMPERED

6" DIAMETER X 4' HOLE

REBAR #4

NO CONSTRUCTION EQUIPMENT WITHIN 25 FEET OF ANY INSTALLED SETTLEMENT MONUMENTS
1. Survey for horizontal and vertical location to nearest .01 inch prior to backfill using known locations that will remain intact during the duration of the monitoring program. Known points explicitly not allowed are those located on fill or that will be destroyed during grading.

2. In the event of damage to settlement plate during grading, contractor shall immediately notify the geotechnical engineer and shall be responsible for restoring the settlement plates to working order.

3. Drill to recover and attach riser pipe.

TYPICAL SETTLEMENT PLATE AND RISER
Deeper in Areas of Swimming Pools, Etc.

Slope Face

Proposed Grade

Windrow with Oversize Material

Windrow Parallel to Slope Face

20' Min.

15' Min.

Oversized Boulder

Compacted Fill

Jetted or Flooded Approved Granular Material

Excavated Trench or Dozer V-cut

Note: Oversize Rock is Larger than 8" in Maximum Dimension.

Section A-A'

OVERSIZE ROCK DISPOSAL DETAIL
Appendix 4: Historical Site Conditions

Phase I Environmental Site Assessment or Other Information on Past Site Use

NOT APPLICABLE
Appendix 5: LID Infeasibility

LID Technical Infeasibility Analysis

NOT APPLICABLE
Table C.1 Type ‘A’, Self-Treating Areas

<table>
<thead>
<tr>
<th>DMA Name or ID</th>
<th>Area (Sq. Ft.)</th>
<th>Stabilization Type</th>
<th>Irrigation Type (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA ‘C’</td>
<td>122,436 sf.</td>
<td>Revegetated</td>
<td>Drip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Santa Ana Watershed - BMP Design Volume, V_{BMP} (Rev. 10-2011)

(Note this worksheet shall only be used in conjunction with BMP designs from the LID BMP Design Handbook)

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Hunsaker & Associates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed by</td>
<td>Brian Lowell, PE</td>
</tr>
<tr>
<td>Case No</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>1/10/2020</td>
</tr>
<tr>
<td>Company Project Number/Name</td>
<td>Bedford Commercial Site</td>
</tr>
</tbody>
</table>

BMP Identification

BMP NAME / ID Infiltration Basin 'B'

Must match Name/ID used on BMP Design Calculation Sheet

Design Rainfall Depth

85th Percentile, 24-hour Rainfall Depth, from the Isohyetal Map in Handbook Appendix E

$D_{85} = 0.85$ inches

Drainage Management Area Tabulation

Insert additional rows if needed to accommodate all DMAs draining to the BMP

<table>
<thead>
<tr>
<th>DMA Type/ID</th>
<th>DMA Area (square feet)</th>
<th>Post-Project Surface Type</th>
<th>Effective Imperious Fraction, I_{e}</th>
<th>DMA Runoff Factor</th>
<th>DMA Areas x Runoff Factor</th>
<th>Design Storm Depth (in)</th>
<th>Design Capture Volume, V_{BMP} (cubic feet)</th>
<th>Proposed Volume on Plans (cubic feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>602100</td>
<td>Mixed Surface Types</td>
<td>0.8</td>
<td>0.60</td>
<td>360836.1</td>
<td></td>
<td>0.85</td>
<td>25559.2</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>DMA Type/ID</th>
<th>DMA Area (square feet)</th>
<th>Post-Project Surface Type</th>
<th>Effective Imperious Fraction, I_{e}</th>
<th>DMA Runoff Factor</th>
<th>DMA Areas x Runoff Factor</th>
<th>Design Storm Depth (in)</th>
<th>Design Capture Volume, V_{BMP} (cubic feet)</th>
<th>Proposed Volume on Plans (cubic feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>25559.2</td>
</tr>
</tbody>
</table>

Notes:
Design Volume

a) Tributary area (BMP subarea)
\[A_T = 13.8 \text{ acres} \]

b) Enter \(V_{\text{BMP}} \) determined from Section 2.1 of this Handbook
\[V_{\text{BMP}} = 25,560 \text{ ft}^3 \]

Maximum Depth

a) Infiltration rate
\[I = 2 \text{ in/hr} \]

b) Factor of Safety (See Table 1, Appendix A: "Infiltration Testing" from this BMP Handbook)
\[FS = 3 \]

c) Calculate \(D_1 \)
\[D_1 = \frac{I \text{ (in/hr)} \times 72 \text{ hrs}}{12 \text{ (in/ft)} \times FS} = 4.0 \text{ ft} \]

d) Enter the depth of freeboard (at least 1 ft)
\[1 \text{ ft} \]

e) Enter depth to historic high ground water (measured from top of basin)
\[100 \text{ ft} \]

f) Enter depth to top of bedrock or impermeable layer (measured from top of basin)
\[100 \text{ ft} \]

g) \(D_2 \) is the smaller of:
- Depth to groundwater - (10 ft + freeboard)
 \[D_2 = 89.0 \text{ ft} \]
- Depth to impermeable layer - (5 ft + freeboard)

h) \(D_{\text{MAX}} \) is the smaller value of \(D_1 \) and \(D_2 \) but shall not exceed 5 feet
\[D_{\text{MAX}} = 4.0 \text{ ft} \]

Basin Geometry

a) Basin side slopes (no steeper than 4:1)
\[z = 4 : 1 \]

b) Proposed basin depth (excluding freeboard)
\[d_B = 4 \text{ ft} \]

c) Minimum bottom surface area of basin \((A_S = V_{\text{BMP}}/d_B) \)
\[A_S = 6390 \text{ ft}^2 \]

d) Proposed Design Surface Area
\[A_D = 14000 \text{ ft}^2 \]

Forebay

a) Forebay volume (minimum 0.5% \(V_{\text{BMP}} \))
\[\text{Volume} = 128 \text{ ft}^3 \]

b) Forebay depth (height of berm/splashwall. 1 foot min.)
\[\text{Depth} = 200 \text{ ft} \]

c) Forebay surface area (minimum)
\[\text{Area} = 1 \text{ ft}^2 \]

d) Full height notch-type weir
\[\text{Width (W)} = 4.0 \text{ in} \]

Notes:
3.1 **INfiltration BAsin**

<table>
<thead>
<tr>
<th>Type of BMP</th>
<th>LID - Infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Mechanisms</td>
<td>Infiltration, Evapotranspiration (when vegetated), Evaporation, and Sedimentation</td>
</tr>
<tr>
<td>Maximum Treatment Area</td>
<td>50 acres</td>
</tr>
<tr>
<td>Other Names</td>
<td>Bioinfiltration Basin</td>
</tr>
</tbody>
</table>

Description

An Infiltration Basin is a flat earthen basin designed to capture the design capture volume, V_{BMP}. The stormwater infiltrates through the bottom of the basin into the underlying soil over a 72 hour drawdown period. Flows exceeding V_{BMP} must discharge to a downstream conveyance system. Trash and sediment accumulate within the forebay as stormwater passes into the basin. Infiltration basins are highly effective in removing all targeted pollutants from stormwater runoff.

See Appendix A, and Appendix C, Section 1 of Basin Guidelines, for additional requirements.

Siting Considerations

The use of infiltration basins may be restricted by concerns over ground water contamination, soil permeability, and clogging at the site. See the applicable WQMP for any specific feasibility considerations for using infiltration BMPs. Where this BMP is being used, the soil beneath the basin must be thoroughly evaluated in a geotechnical report since the underlying soils are critical to the basin’s long term performance. To protect the basin from erosion, the sides and bottom of the basin must be vegetated, preferably with native or low water use plant species.

In addition, these basins may not be appropriate for the following site conditions:

- Industrial sites or locations where spills of toxic materials may occur
- Sites with very low soil infiltration rates
- Sites with high groundwater tables or excessively high soil infiltration rates, where pollutants can affect ground water quality
- Sites with unstabilized soil or construction activity upstream
- On steeply sloping terrain
- Infiltration basins located in a fill condition should refer to Appendix A of this Handbook for details on special requirements/restrictions
Setbacks

Always consult your geotechnical engineer for site specific recommendations regarding setbacks for infiltration trenches. Recommended setbacks are needed to protect buildings, existing trees, walls, onsite or nearby wells, streams, and tanks. Setbacks should be considered early in the design process since they can affect where infiltration facilities may be placed and how deep they are allowed to be. For instance, depth setbacks can dictate fairly shallow facilities that will have a larger footprint and, in some cases, may make an infiltration basin infeasible. In that instance, another BMP must be selected.

Infiltration basins typically must be set back:

- 10 feet from the historic high groundwater (measured vertically from the bottom of the basin, as shown in Figure 2)
- 5 feet from bedrock or impermeable surface layer (measured vertically from the bottom of the basin, as shown in Figure 2)
- From all existing mature tree drip lines as indicated in Figure 2 (to protect their root structure)
- 100 feet horizontally from wells, tanks or springs

Setbacks to walls and foundations must be included as part of the Geotechnical Report. All other setbacks shall be in accordance with applicable standards of the District’s Basin Guidelines (Appendix C).

Figure 2 – Setback Requirements
Forebay

A concrete forebay shall be provided to reduce sediment clogging and to reduce erosion. The forebay shall have a design volume of at least 0.5% V_{BMP} and a minimum 1 foot high concrete splashwall / berm. Full height notch-type weir(s), offset from the line of flow from the basin inlet to prevent short circuiting, shall be used to outlet the forebay. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

Overflow

Flows exceeding V_{BMP} must discharge to an acceptable downstream conveyance system. Where an adequate outlet is present, an overflow structure may be used. Where an embankment is present, an emergency spillway may be used instead. Overflows must be placed just above the design water surface for V_{BMP} and be near the outlet of the system. The overflow structure shall be similar to the District’s Standard Drawing CB 110. Additional details may be found in the District’s Basin Guidelines (Appendix C).
Infiltration Basin BMP Fact Sheet

Landscaping Requirements
Basin vegetation provides erosion protection, improves sediment removal and assists in allowing infiltration to occur. The basin surface and side slopes shall be planted with native grasses. Proper landscape management is also required to ensure that the vegetation does not contribute to water pollution through pesticides, herbicides, or fertilizers. Landscaping shall be in accordance with County of Riverside Ordinance 859 and the District’s *Basin Guidelines* (Appendix C), or other guidelines issued by the Engineering Authority.

Maintenance
Normal maintenance of an infiltration basin includes the maintenance of landscaping, debris and trash removal from the surface of the basin, and tending to problems associated with standing water (vectors, odors, etc.). Significant ponding, especially more than 72 hours after an event, may indicate that the basin surface is no longer providing sufficient infiltration and requires aeration. See the District’s *Basin Guidelines* (Appendix C) for additional requirements (i.e., fencing, maintenance access, etc.).

Table 1 - Inspection and Maintenance

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Inspection and Maintenance Activity</th>
</tr>
</thead>
</table>
| **Ongoing**, including just before annual storm seasons and following rainfall events. | Maintain vegetation as needed. Use of fertilizers, pesticides and herbicides should be strenuously avoided to ensure they don’t contribute to water pollution. If appropriate native plant selections and other IPM methods are used, such products shouldn’t be needed. If such projects are used,
 ○ Products shall be applied in accordance with their labeling, especially in relation to application to water, and in areas subjected to flooding.
 ○ Fertilizers should not be applied within 15 days before, after, or during the rain season.
 Remove debris and litter from the entire basin to minimize clogging and improve aesthetics.
 Check for obvious problems and repair as needed. Address odor, insects, and overgrowth issues associated with stagnant or standing water in the basin bottom. There should be no long-term ponding water.
 Check for erosion and sediment laden areas in the basin. Repair as needed. Clean forebay if needed.
 Revegetate side slopes where needed. |
| **Annually**, if possible, schedule these inspections within 72 hours after a significant rainfall. | Inspection of hydraulic and structural facilities. Examine the inlet for blockage, the embankment and spillway integrity, as well as damage to any structural element.
 Check for erosion, slumping and overgrowth. Repair as needed.
 Check basin depth for sediment build up and reduced total capacity. Scrape bottom as needed and remove sediment. Restore to original cross-section and infiltration rate. Replant basin vegetation.
 Verify the basin bottom is allowing acceptable infiltration. Use a disc or other method to aerate basin bottom only if there is actual significant loss of infiltrative capacity, rather than on a routine basis.
 No water should be present 72 hours after an event. No long term standing water should be present at all. No algae formation should be visible. Correct problem as needed. |

1. CA Stormwater BMP Handbook for New Development and Significant Redevelopment
Table 2 - Design and Sizing Criteria for Infiltration Basins

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Infiltration Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Volume</td>
<td>V_{BMP}</td>
</tr>
<tr>
<td>Forebay Volume</td>
<td>0.5% V_{BMP}</td>
</tr>
<tr>
<td>Drawdown time (maximum)</td>
<td>72 hours</td>
</tr>
<tr>
<td>Maximum tributary area</td>
<td>50 acres2</td>
</tr>
<tr>
<td>Minimum infiltration rate</td>
<td>Must be sufficient to drain the basin within the required Drawdown time over the life of the BMP. The WQMP may include specific requirements for minimum tested infiltration rates.</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>5 feet</td>
</tr>
<tr>
<td>Spillway erosion control</td>
<td>Energy dissipators to reduce velocities1</td>
</tr>
<tr>
<td>Basin Slope</td>
<td>0%</td>
</tr>
<tr>
<td>Freeboard (minimum)</td>
<td>1 foot1</td>
</tr>
<tr>
<td>Historic High Groundwater Setback (max)</td>
<td>10 feet</td>
</tr>
<tr>
<td>Bedrock/impermeable layer setback (max)</td>
<td>5 feet</td>
</tr>
<tr>
<td>Tree setbacks</td>
<td>Mature tree drip line must not overhang the basin</td>
</tr>
<tr>
<td>Set back from wells, tanks or springs</td>
<td>100 feet</td>
</tr>
<tr>
<td>Set back from foundations</td>
<td>As recommended in Geotechnical Report</td>
</tr>
</tbody>
</table>

1. Ventura County’s Technical Guidance Manual for Stormwater Quality Control Measures
2. CA Stormwater BMP Handbook for New Development and Significant Redevelopment

Note: The information contained in this BMP Factsheet is intended to be a summary of design considerations and requirements. Additional information which applies to all detention basins may be found in the District’s Basin Guidelines (Appendix C). In addition, information herein may be superseded by other guidelines issued by the co-permittee.

INFILTRATION BASIN SIZING PROCEDURE

1. Find the Design Volume, V_{BMP}.
 a) Enter the Tributary Area, A_T.
 b) Enter the Design Volume, V_{BMP}, determined from Section 2.1 of this Handbook.

2. Determine the Maximum Depth.
 a) Enter the infiltration rate. The infiltration rate shall be established as described in Appendix A: “Infiltration Testing”.
 b) Enter the design Factor of Safety from Table 1 in Appendix A: “Infiltration Testing”.
 c) The spreadsheet will determine D_1, the maximum allowable depth of the basin based on the infiltration rate along with the maximum drawdown time (72 hours) and the Factor of Safety.

$$D_1 = \frac{[(t) x (l)]}{12s}$$

Where
- $l =$ site infiltration rate (in/hr)
- $s =$ safety factor
- $t =$ drawdown time (maximum 72 hours)
d) Enter the depth of freeboard.
e) Enter the depth to the historic high groundwater level measured from the top of the basin.
f) Enter the depth to the top of bedrock or other impermeable layer measured from the finished grade.
g) The spreadsheet will determine \(D_2 \), the total basin depth (including freeboard, if used) of the basin, based on restrictions to the depth by groundwater and an impermeable layer.

\[
D_2 = \text{Depth to groundwater} - (10 + \text{freeboard}) \text{ (ft)};
\]
or

\[
D_2 = \text{Depth to impermeable layer} - (5 + \text{freeboard}) \text{ (ft)}
\]

Whichever is least.
h) The spreadsheet will determine the maximum allowable effective depth of basin, \(D_{\text{MAX}} \), based on the smallest value between \(D_1 \) and \(D_2 \). \(D_{\text{MAX}} \) is the maximum depth of water only and does not include freeboard. \(D_{\text{MAX}} \) shall not exceed 5 feet.

3. Basin Geometry

a) Enter the basin side slopes, \(z \) (no steeper than 4:1).
b) Enter the proposed basin depth, \(d_B \) excluding freeboard.
c) The spreadsheet will determine the minimum required surface area of the basin:

\[
A_s = \frac{V_{\text{BMP}}}{d_B}
\]

Where \(A_s \) = minimum area required \(\text{(ft}^2) \)

\(V_{\text{BMP}} \) = volume of the infiltration basin \(\text{(ft}^3) \)

\(d_B \) = proposed depth not to exceed maximum allowable depth, \(D_{\text{MAX}} \) \(\text{(ft)} \)

d) Enter the proposed bottom surface area. This area shall not be less than the minimum required surface area.

4. Forebay

A concrete forebay with a design volume of at least 0.5% \(V_{\text{BMP}} \) and a minimum 1 foot high concrete splashwall shall be provided. Full-height rectangular weir(s) shall be used to outlet the forebay. The weir(s) must be offset from the line of flow from the basin inlet. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

a) The spreadsheet will determine the minimum required forebay volume based on 0.5% \(V_{\text{BMP}} \).
b) Enter the proposed depth of the forebay berm/splashwall (1 foot minimum).
c) The spreadsheet will determine the minimum required forebay surface area.
d) Enter the width of rectangular weir to be used (minimum 1.5 inches). Weir width should be established based on a 5 minute drawdown time.
Infiltration Basin

Description
An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices.

California Experience
Infiltration basins have a long history of use in California, especially in the Central Valley. Basins located in Fresno were among those initially evaluated in the National Urban Runoff Program and were found to be effective at reducing the volume of runoff, while posing little long-term threat to groundwater quality (EPA, 1983; Schroeder, 1995). Proper siting of these devices is crucial as underscored by the experience of Caltrans in siting two basins in Southern California. The basin with marginal separation from groundwater and soil permeability failed immediately and could never be rehabilitated.

Advantages
- Provides 100% reduction in the load discharged to surface waters.
- The principal benefit of infiltration basins is the approximation of pre-development hydrology during which a
significant portion of the average annual rainfall runoff is infiltrated and evaporated rather than flushed directly to creeks.

- If the water quality volume is adequately sized, infiltration basins can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events.

Limitations
- May not be appropriate for industrial sites or locations where spills may occur.
- Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D.
- If infiltration rates exceed 2.4 inches/hour, then the runoff should be fully treated prior to infiltration to protect groundwater quality.
- Not suitable on fill sites or steep slopes.
- Risk of groundwater contamination in very coarse soils.
- Upstream drainage area must be completely stabilized before construction.
- Difficult to restore functioning of infiltration basins once clogged.

Design and Sizing Guidelines
- Water quality volume determined by local requirements or sized so that 85% of the annual runoff volume is captured.
- Basin sized so that the entire water quality volume is infiltrated within 48 hours.
- Vegetation establishment on the basin floor may help reduce the clogging rate.

Construction/Inspection Considerations
- Before construction begins, stabilize the entire area draining to the facility. If impossible, place a diversion berm around the perimeter of the infiltration site to prevent sediment entrance during construction or remove the top 2 inches of soil after the site is stabilized. Stabilize the entire contributing drainage area, including the side slopes, before allowing any runoff to enter once construction is complete.
- Place excavated material such that it can not be washed back into the basin if a storm occurs during construction of the facility.
- Build the basin without driving heavy equipment over the infiltration surface. Any equipment driven on the surface should have extra-wide (“low pressure”) tires. Prior to any construction, rope off the infiltration area to stop entrance by unwanted equipment.
- After final grading, till the infiltration surface deeply.
- Use appropriate erosion control seed mix for the specific project and location.
Infiltration Basin

Performance
As water migrates through porous soil and rock, pollutant attenuation mechanisms include precipitation, sorption, physical filtration, and bacterial degradation. If functioning properly, this approach is presumed to have high removal efficiencies for particulate pollutants and moderate removal of soluble pollutants. Actual pollutant removal in the subsurface would be expected to vary depending upon site-specific soil types. This technology eliminates discharge to surface waters except for the very largest storms; consequently, complete removal of all stormwater constituents can be assumed.

There remain some concerns about the potential for groundwater contamination despite the findings of the NURP and Nightingale (1975; 1987a,b,c; 1989). For instance, a report by Pitt et al. (1994) highlighted the potential for groundwater contamination from intentional and unintentional stormwater infiltration. That report recommends that infiltration facilities not be sited in areas where high concentrations are present or where there is a potential for spills of toxic material. Conversely, Schroeder (1995) reported that there was no evidence of groundwater impacts from an infiltration basin serving a large industrial catchment in Fresno, CA.

Siting Criteria
The key element in siting infiltration basins is identifying sites with appropriate soil and hydrogeologic properties, which is critical for long term performance. In one study conducted in Prince George’s County, Maryland (Galli, 1992), all of the infiltration basins investigated clogged within 2 years. It is believed that these failures were for the most part due to allowing infiltration at sites with rates of less than 0.5 in/hr, basing siting on soil type rather than field infiltration tests, and poor construction practices that resulted in soil compaction of the basin invert.

A study of 23 infiltration basins in the Pacific Northwest showed better long-term performance in an area with highly permeable soils (Hilding, 1996). In this study, few of the infiltration basins had failed after 10 years. Consequently, the following guidelines for identifying appropriate soil and subsurface conditions should be rigorously adhered to.

- Determine soil type (consider RCS soil type ‘A, B or C’ only) from mapping and consult USDA soil survey tables to review other parameters such as the amount of silt and clay, presence of a restrictive layer or seasonal high water table, and estimated permeability. The soil should not have more than 30% clay or more than 40% of clay and silt combined. Eliminate sites that are clearly unsuitable for infiltration.

- Groundwater separation should be at least 3 m from the basin invert to the measured ground water elevation. There is concern at the state and regional levels of the impact on groundwater quality from infiltrated runoff, especially when the separation between groundwater and the surface is small.

- Location away from buildings, slopes and highway pavement (greater than 6 m) and wells and bridge structures (greater than 30 m). Sites constructed of fill, having a base flow or with a slope greater than 15% should not be considered.

- Ensure that adequate head is available to operate flow splitter structures (to allow the basin to be offline) without ponding in the splitter structure or creating backwater upstream of the splitter.
Base flow should not be present in the tributary watershed.

Secondary Screening Based on Site Geotechnical Investigation

- At least three in-hole conductivity tests shall be performed using USBR 7300-89 or Bouwer-Rice procedures (the latter if groundwater is encountered within the boring), two tests at different locations within the proposed basin and the third down gradient by no more than approximately 10 m. The tests shall measure permeability in the side slopes and the bed within a depth of 3 m of the invert.

- The minimum acceptable hydraulic conductivity as measured in any of the three required test holes is 13 mm/hr. If any test hole shows less than the minimum value, the site should be disqualified from further consideration.

- Exclude from consideration sites constructed in fill or partially in fill unless no silts or clays are present in the soil boring. Fill tends to be compacted, with clays in a dispersed rather than flocculated state, greatly reducing permeability.

- The geotechnical investigation should be such that a good understanding is gained as to how the stormwater runoff will move in the soil (horizontally or vertically) and if there are any geological conditions that could inhibit the movement of water.

Additional Design Guidelines

1. **Basin Sizing** - The required water quality volume is determined by local regulations or sufficient to capture 85% of the annual runoff.

2. **Provide pretreatment if sediment loading is a maintenance concern for the basin.**

3. **Include energy dissipation in the inlet design for the basins. Avoid designs that include a permanent pool to reduce opportunity for standing water and associated vector problems.**

4. **Basin invert area should be determined by the equation:**

 \[
 A = \frac{WQV}{kt}
 \]

 where
 \[
 A = \text{Basin invert area (m}^2) \\
 WQV = \text{water quality volume (m}^2) \\
 k = 0.5 \text{ times the lowest field-measured hydraulic conductivity (m/hr)} \\
 t = \text{drawdown time (48 hr)}
 \]

5. **The use of vertical piping, either for distribution or infiltration enhancement shall not be allowed to avoid device classification as a Class V injection well per 40 CFR 146.5(e)(4).**
Infiltration Basin

Maintenance
Regular maintenance is critical to the successful operation of infiltration basins. Recommended operation and maintenance guidelines include:

- Inspections and maintenance to ensure that water infiltrates into the subsurface completely (recommended infiltration rate of 72 hours or less) and that vegetation is carefully managed to prevent creating mosquito and other vector habitats.
- Observe drain time for the design storm after completion or modification of the facility to confirm that the desired drain time has been obtained.
- Schedule semiannual inspections for beginning and end of the wet season to identify potential problems such as erosion of the basin side slopes and invert, standing water, trash and debris, and sediment accumulation.
- Remove accumulated trash and debris in the basin at the start and end of the wet season.
- Inspect for standing water at the end of the wet season.
- Trim vegetation at the beginning and end of the wet season to prevent establishment of woody vegetation and for aesthetic and vector reasons.
- Remove accumulated sediment and regrade when the accumulated sediment volume exceeds 10% of the basin.
- If erosion is occurring within the basin, revegetate immediately and stabilize with an erosion control mulch or mat until vegetation cover is established.
- To avoid reversing soil development, scarification or other disturbance should only be performed when there are actual signs of clogging, rather than on a routine basis. Always remove deposited sediments before scarification, and use a hand-guided rotary tiller, if possible, or a disc harrow pulled by a very light tractor.

Cost
Infiltration basins are relatively cost-effective practices because little infrastructure is needed when constructing them. One study estimated the total construction cost at about $2 per ft3 (adjusted for inflation) of storage for a 0.25-acre basin (SWRPC, 1991). As with other BMPs, these published cost estimates may deviate greatly from what might be incurred at a specific site. For instance, Caltrans spent about $18/ft^3$ for the two infiltration basins constructed in southern California, each of which had a water quality volume of about 0.34 ac.-ft. Much of the higher cost can be attributed to changes in the storm drain system necessary to route the runoff to the basin locations.

Infiltration basins typically consume about 2 to 3% of the site draining to them, which is relatively small. Additional space may be required for buffer, landscaping, access road, and fencing. Maintenance costs are estimated at 5 to 10% of construction costs.

One cost concern associated with infiltration practices is the maintenance burden and longevity. If improperly maintained, infiltration basins have a high failure rate. Thus, it may be necessary to replace the basin with a different technology after a relatively short period of time.
References and Sources of Additional Information

Infiltration Basin

Information Resources

Ferguson, B.K., 1994. Stormwater Infiltration. CRC Press, Ann Arbor, MI.

Site Design & Landscape Planning SD-10

Design Objectives
- Maximize Infiltration
- Provide Retention
- Slow Runoff
- Minimize Impervious Land Coverage
- Prohibit Dumping of Improper Materials
- Contain Pollutants
- Collect and Convey

Description
Each project site possesses unique topographic, hydrologic, and vegetative features, some of which are more suitable for development than others. Integrating and incorporating appropriate landscape planning methodologies into the project design is the most effective action that can be done to minimize surface and groundwater contamination from stormwater.

Approach
Landscape planning should couple consideration of land suitability for urban uses with consideration of community goals and projected growth. Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Suitable Applications
Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment.

Design Considerations
Design requirements for site design and landscapes planning should conform to applicable standards and specifications of agencies with jurisdiction and be consistent with applicable General Plan and Local Area Plan policies.
Designing New Installations
Begin the development of a plan for the landscape unit with attention to the following general principles:

- Formulate the plan on the basis of clearly articulated community goals. Carefully identify conflicts and choices between retaining and protecting desired resources and community growth.

- Map and assess land suitability for urban uses. Include the following landscape features in the assessment: wooded land, open unwooded land, steep slopes, erosion-prone soils, foundation suitability, soil suitability for waste disposal, aquifers, aquifer recharge areas, wetlands, floodplains, surface waters, agricultural lands, and various categories of urban land use. When appropriate, the assessment can highlight outstanding local or regional resources that the community determines should be protected (e.g., a scenic area, recreational area, threatened species habitat, farmland, fish run). Mapping and assessment should recognize not only these resources but also additional areas needed for their sustenance.

Project plan designs should conserve natural areas to the extent possible, maximize natural water storage and infiltration opportunities, and protect slopes and channels.

Conserve Natural Areas during Landscape Planning
If applicable, the following items are required and must be implemented in the site layout during the subdivision design and approval process, consistent with applicable General Plan and Local Area Plan policies:

- Cluster development on least-sensitive portions of a site while leaving the remaining land in a natural undisturbed condition.

- Limit clearing and grading of native vegetation at a site to the minimum amount needed to build lots, allow access, and provide fire protection.

- Maximize trees and other vegetation at each site by planting additional vegetation, clustering tree areas, and promoting the use of native and/or drought tolerant plants.

- Promote natural vegetation by using parking lot islands and other landscaped areas.

- Preserve riparian areas and wetlands.

Maximize Natural Water Storage and Infiltration Opportunities Within the Landscape Unit

- Promote the conservation of forest cover. Building on land that is already deforested affects basin hydrology to a lesser extent than converting forested land. Loss of forest cover reduces interception storage, detention in the organic forest floor layer, and water losses by evapotranspiration, resulting in large peak runoff increases and either their negative effects or the expense of countering them with structural solutions.

- Maintain natural storage reservoirs and drainage corridors, including depressions, areas of permeable soils, swales, and intermittent streams. Develop and implement policies and
regulations to discourage the clearing, filling, and channelization of these features. Utilize them in drainage networks in preference to pipes, culverts, and engineered ditches.

- Evaluating infiltration opportunities by referring to the stormwater management manual for the jurisdiction and pay particular attention to the selection criteria for avoiding groundwater contamination, poor soils, and hydrogeological conditions that cause these facilities to fail. If necessary, locate developments with large amounts of impervious surfaces or a potential to produce relatively contaminated runoff away from groundwater recharge areas.

Protection of Slopes and Channels during Landscape Design

- Convey runoff safely from the tops of slopes.

- Avoid disturbing steep or unstable slopes.

- Avoid disturbing natural channels.

- Stabilize disturbed slopes as quickly as possible.

- Vegetate slopes with native or drought tolerant vegetation.

- Control and treat flows in landscaping and/or other controls prior to reaching existing natural drainage systems.

- Stabilize temporary and permanent channel crossings as quickly as possible, and ensure that increases in run-off velocity and frequency caused by the project do not erode the channel.

- Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels in accordance with applicable specifications to minimize erosion. Energy dissipaters shall be installed in such a way as to minimize impacts to receiving waters.

- Line on-site conveyance channels where appropriate, to reduce erosion caused by increased flow velocity due to increases in tributary impervious area. The first choice for linings should be grass or some other vegetative surface, since these materials not only reduce runoff velocities, but also provide water quality benefits from filtration and infiltration. If velocities in the channel are high enough to erode grass or other vegetative linings, riprap, concrete, soil cement, or geo-grid stabilization are other alternatives.

- Consider other design principles that are comparable and equally effective.

Redeveloping Existing Installations

Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define “redevelopment” in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of “redevelopment” must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under “designing new installations” above should be followed.
Redevelopment may present significant opportunity to add features which had not previously been implemented. Examples include incorporation of depressions, areas of permeable soils, and swales in newly redeveloped areas. While some site constraints may exist due to the status of already existing infrastructure, opportunities should not be missed to maximize infiltration, slow runoff, reduce impervious areas, disconnect directly connected impervious areas.

Other Resources

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Roof Runoff Controls

Description
Various roof runoff controls are available to address stormwater that drains off rooftops. The objective is to reduce the total volume and rate of runoff from individual lots, and retain the pollutants on site that may be picked up from roofing materials and atmospheric deposition. Roof runoff controls consist of directing the roof runoff away from paved areas and mitigating flow to the storm drain system through one of several general approaches: cisterns or rain barrels; dry wells or infiltration trenches; pop-up emitters, and foundation planting. The first three approaches require the roof runoff to be contained in a gutter and downspout system. Foundation planting provides a vegetated strip under the drip line of the roof.

Approach
Design of individual lots for single-family homes as well as lots for higher density residential and commercial structures should consider site design provisions for containing and infiltrating roof runoff or directing roof runoff to vegetative swales or buffer areas. Retained water can be reused for watering gardens, lawns, and trees. Benefits to the environment include reduced demand for potable water used for irrigation, improved stormwater quality, increased groundwater recharge, decreased runoff volume and peak flows, and decreased flooding potential.

Suitable Applications
Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment.

Design Considerations
Designing New Installations
Cisterns or Rain Barrels
One method of addressing roof runoff is to direct roof downspouts to cisterns or rain barrels. A cistern is an above ground storage vessel with either a manually operated valve or a permanently open outlet. Roof runoff is temporarily stored and then released for irrigation or infiltration between storms. The number of rain
barrels needed is a function of the rooftop area. Some low impact developers recommend that every house have at least 2 rain barrels, with a minimum storage capacity of 1000 liters. Roof barrels serve several purposes including mitigating the first flush from the roof which has a high volume, amount of contaminants, and thermal load. Several types of rain barrels are commercially available. Consideration must be given to selecting rain barrels that are vector proof and childproof. In addition, some barrels are designed with a bypass valve that filters out grit and other contaminants and routes overflow to a soak-away pit or rain garden.

If the cistern has an operable valve, the valve can be closed to store stormwater for irrigation or infiltration between storms. This system requires continual monitoring by the resident or grounds crews, but provides greater flexibility in water storage and metering. If a cistern is provided with an operable valve and water is stored inside for long periods, the cistern must be covered to prevent mosquitoes from breeding.

A cistern system with a permanently open outlet can also provide for metering stormwater runoff. If the cistern outlet is significantly smaller than the size of the downspout inlet (say ¼ to ½ inch diameter), runoff will build up inside the cistern during storms, and will empty out slowly after peak intensities subside. This is a feasible way to mitigate the peak flow increases caused by rooftop impervious land coverage, especially for the frequent, small storms.

Dry wells and Infiltration Trenches

Roof downspouts can be directed to dry wells or infiltration trenches. A dry well is constructed by excavating a hole in the ground and filling it with an open graded aggregate, and allowing the water to fill the dry well and infiltrate after the storm event. An underground connection from the downspout conveys water into the dry well, allowing it to be stored in the voids. To minimize sedimentation from lateral soil movement, the sides and top of the stone storage matrix can be wrapped in a permeable filter fabric, though the bottom may remain open. A perforated observation pipe can be inserted vertically into the dry well to allow for inspection and maintenance.

In practice, dry wells receiving runoff from single roof downspouts have been successful over long periods because they contain very little sediment. They must be sized according to the amount of rooftop runoff received, but are typically 4 to 5 feet square, and 2 to 3 feet deep, with a minimum of 1-foot soil cover over the top (maximum depth of 10 feet).

To protect the foundation, dry wells must be set away from the building at least 10 feet. They must be installed in solids that accommodate infiltration. In poorly drained soils, dry wells have very limited feasibility.

Infiltration trenches function in a similar manner and would be particularly effective for larger roof areas. An infiltration trench is a long, narrow, rock-filled trench with no outlet that receives stormwater runoff. These are described under Treatment Controls.

Pop-up Drainage Emitter

Roof downspouts can be directed to an underground pipe that daylights some distance from the building foundation, releasing the roof runoff through a pop-up emitter. Similar to a pop-up irrigation head, the emitter only opens when there is flow from the roof. The emitter remains flush to the ground during dry periods, for ease of lawn or landscape maintenance.
Foundation Planting
Landscape planting can be provided around the base to allow increased opportunities for stormwater infiltration and protect the soil from erosion caused by concentrated sheet flow coming off the roof. Foundation plantings can reduce the physical impact of water on the soil and provide a subsurface matrix of roots that encourage infiltration. These plantings must be sturdy enough to tolerate the heavy runoff sheet flows, and periodic soil saturation.

Redeveloping Existing Installations
Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define “redevelopment” in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of “redevelopment” must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under “designing new installations” above should be followed.

Supplemental Information
Examples
- City of Ottawa’s Water Links Surface – Water Quality Protection Program
- City of Toronto Downspout Disconnection Program
- City of Boston, MA, Rain Barrel Demonstration Program

Other Resources

Start at the Source, Bay Area Stormwater Management Agencies Association, 1999 Edition
Description
Irrigation water provided to landscaped areas may result in excess irrigation water being conveyed into stormwater drainage systems.

Approach
Project plan designs for development and redevelopment should include application methods of irrigation water that minimize runoff of excess irrigation water into the stormwater conveyance system.

Suitable Applications
Appropriate applications include residential, commercial and industrial areas planned for development or redevelopment. (Detached residential single-family homes are typically excluded from this requirement.)

Design Considerations
Designing New Installations
The following methods to reduce excessive irrigation runoff should be considered, and incorporated and implemented where determined applicable and feasible by the Permittee:

- Employ rain-triggered shutoff devices to prevent irrigation after precipitation.
- Design irrigation systems to each landscape area’s specific water requirements.
- Include design featuring flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines.
- Implement landscape plans consistent with County or City water conservation resolutions, which may include provision of water sensors, programmable irrigation times (for short cycles), etc.
Design timing and application methods of irrigation water to minimize the runoff of excess irrigation water into the storm water drainage system.

Group plants with similar water requirements in order to reduce excess irrigation runoff and promote surface filtration. Choose plants with low irrigation requirements (for example, native or drought tolerant species). Consider design features such as:

- Using mulches (such as wood chips or bar) in planter areas without ground cover to minimize sediment in runoff
- Installing appropriate plant materials for the location, in accordance with amount of sunlight and climate, and use native plant materials where possible and/or as recommended by the landscape architect
- Leaving a vegetative barrier along the property boundary and interior watercourses, to act as a pollutant filter, where appropriate and feasible
- Choosing plants that minimize or eliminate the use of fertilizer or pesticides to sustain growth

Employ other comparable, equally effective methods to reduce irrigation water runoff.

Redeveloping Existing Installations
Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define “redevelopment” in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. The definition of “redevelopment” must be consulted to determine whether or not the requirements for new development apply to areas intended for redevelopment. If the definition applies, the steps outlined under “designing new installations” above should be followed.

Other Resources

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Description
Waste materials dumped into storm drain inlets can have severe impacts on receiving and ground waters. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Storm drain signs and stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets.

Approach
The stencil or affixed sign contains a brief statement that prohibits dumping of improper materials into the urban runoff conveyance system. Storm drain messages have become a popular method of alerting the public about the effects of and the prohibitions against waste disposal.

Suitable Applications
Stencils and signs alert the public to the destination of pollutants discharged to the storm drain. Signs are appropriate in residential, commercial, and industrial areas, as well as any other area where contributions or dumping to storm drains is likely.

Design Considerations
Storm drain message markers or placards are recommended at all storm drain inlets within the boundary of a development project. The marker should be placed in clear sight facing toward anyone approaching the inlet from either side. All storm drain inlet locations should be identified on the development site map.

Designing New Installations
The following methods should be considered for inclusion in the project design and show on project plans:

- Provide stenciling or labeling of all storm drain inlets and catch basins, constructed or modified, within the project area with prohibitive language. Examples include “NO DUMPING...
STORM DRAIN SIGNAGE

– DRAINS TO OCEAN™ and/or other graphical icons to discourage illegal dumping.

■ Post signs with prohibitive language and/or graphical icons, which prohibit illegal dumping at public access points along channels and creeks within the project area.

Note - Some local agencies have approved specific signage and/or storm drain message placards for use. Consult local agency stormwater staff to determine specific requirements for placard types and methods of application.

Redeveloping Existing Installations
Various jurisdictional stormwater management and mitigation plans (SUSMP, WQMP, etc.) define “redevelopment” in terms of amounts of additional impervious area, increases in gross floor area and/or exterior construction, and land disturbing activities with structural or impervious surfaces. If the project meets the definition of “redevelopment”, then the requirements stated under “designing new installations” above should be included in all project design plans.

Additional Information

Maintenance Considerations
■ Legibility of markers and signs should be maintained. If required by the agency with jurisdiction over the project, the owner/operator or homeowner’s association should enter into a maintenance agreement with the agency or record a deed restriction upon the property title to maintain the legibility of placards or signs.

Placement
■ Signage on top of curbs tends to weather and fade.
■ Signage on face of curbs tends to be worn by contact with vehicle tires and sweeper brooms.

Supplemental Information

Examples
■ Most MS4 programs have storm drain signage programs. Some MS4 programs will provide stencils, or arrange for volunteers to stencil storm drains as part of their outreach program.

Other Resources

Model Standard Urban Storm Water Mitigation Plan (SUSMP) for San Diego County, Port of San Diego, and Cities in San Diego County, February 14, 2002.

Appendix 7: Hydromodification

Supporting Detail Relating to Hydrologic Conditions of Concern

- Development of the site is anticipated to both increase the storm run-off volume and decrease the time of concentration. ‘Hydromodification’ will be addressed by mimicking the pre-development hydrograph with the post-development hydrograph for the 2-year, 24-hour return frequency storm. By sizing the infiltration basin to capture and detain the largest storm volume increase, the basin will then be able address hydromodification by slowly metering out the retained volume at a flow rate less than or equal to the pre-development condition flow rates. As stated within the Hydrology Analysis prepared for the site (provided herein), the largest storm volume increase was experienced during the 10 year 24 hour storm event, where the anticipated run-off increased by 2.7 acre feet from the natural condition. Therefore, the infiltration basin will be preliminarily sized to retain 2.7 acre feet above. Basin routing and outlet structure details will be provided upon final engineering.
PRELIMINARY HYDROLOGY ANALYSIS
Tentative Tract Map 37788
Bedford Commercial Site

FOR

GUARDIAN CAPITAL
5780 FLEET STREET, SUITE 225
CARLSBAD, CA 92008

CITY OF CORONA
COUNTY OF RIVERSIDE
CALIFORNIA

PREPARED BY:

HUNSAKER & ASSOCIATES
IRVINE, INC.
PLANNING • ENGINEERING • SURVEYING
2900 ADAMS STREET; SUITE A-15
RIVERSIDE CA, 92504

Brian R. Lowell, R.C.E. 74550

November 2019 W.O. # 2749-18
SECTION 1 - Summary

Introduction

The purpose of this report is to present the backup hydrology and hydraulics that will be used for the final engineering portion of Bedford Commercial Site of the Bedford project in the City of Corona. Furthermore, this report is supplemental to the previous overall “Hydrology Study for Tract 36294” prepared by Hunsaker & Associates in April 2017, as well as the “Master Drainage Plan for Tract 36294 – Mass-Grading” by CASC Engineering dated December 2015. Please refer to these reports for analysis pertaining to mitigation and basin sizing.

The proposed commercial development is located in the southeastern portion of the City of Corona, Riverside County, California on a portion of the 276 acre parcel owned by Guardian Capital. The original commercial phase of the project consisted of approximately 10.03 acres of the 276 acre site, located on the northern most portion of the overall project. The proposed development expands the commercial site northeasterly, adding an additional 17.85 acres. The total combined lot area is 27.88 acres with development occurring on 23.5 acres. Development of this site will require the preparation of a new tentative tract map, TTM 37788. The commercial phase of the Bedford project is bounded by Eagle Glen Parkway to the north, Bedford Canyon Road to the west, Hudson House Drive (proposed) to the south and Interstate 15 to the east. Generally, the project is situated west of Interstate 15 and south of Eagle Glen Parkway as shown on the included vicinity map.

Existing Conditions

The project site, TTM 37788, consists of vacant undeveloped land. This area is comprised of various soil types, as is shown on the included soils map. The site is situated within the Bedford Wash / Temescal Wash sub-watershed portion of the Santa Ana River watershed. Furthermore, the project lies along the northerly banks of Bedford Canyon Wash. The topography of the site is typical of the Corona Valley in that it exhibits gently rolling topography with elevations ranging from approximately 900 feet to 1,150 feet above mean sea level.

Proposed Drainage Facilities

The proposed development, TTM 37788, divides the site into two onsite drainage areas “A” and “B”. Drainage management area ‘A’ consists of southwesterly most 10.8 acres. Run-off from DMA ‘A’ is collected by a series of private catch basins which are connected to a private storm drain system within the commercial site, flowing easterly. Ultimately connecting to the existing backbone storm drain system within Bedford Canyon Road at its interstation with the Lift Station access road. All run-off from DMA ‘A’ has already been accounted for in the overall hydrology master drainage plan for Tract 36294. The existing infiltration basin has been designed to accommodate these flows, no additional mitigation measures are required.

Similarly, drainage management area ‘B’ consists of 15.7 acres that are adjacent to Tract 36294. Run-off from DMA ‘B’ is collected by a series of private catch basins which are connected to the private storm drain system flowing southeasterly towards and into a proposed water quality infiltration basin located in the southeastern portion of the site.
All flows generated from the commercial phase will eventually be conveyed to Bedford Canyon Wash, where it will follow the path of the Santa Ana Watershed towards the Pacific Ocean.

The backbone facilities for DMA ‘A’ have been designed to convey the 100-year storm event (see previous master drainage studies), we have analyzed the proposed improvements associated with the commercial phase based on the developed conditions for the 2-year, 10-year, and 100-year storm events. RCFC&WCD rational method was utilized to determine developed flow rates.

The proposed facilities for DMA ‘B’ are designed to convey the 100-year storm event, we have analyzed the site based on the pre and post development conditions for the 2-year, 10-year, and 100-year storm events. RCFC&WCD rational and unit hydrograph methodologies were utilized to determine pre and post development flow rates. The results of this analysis are summarized in the following tables.

Drainage Management Area ‘B’

All storm run-off from the developed areas within DMA ‘B’ drain to the proposed water quality basin located in the southeastern portion of the site. Any water discharged from the site will be directed via underground storm drain pipes and outlet into Bedford Canyon Wash, where it will follow the path of the Santa Ana River Watershed towards the Pacific Ocean.

The proposed development will increase the peak flow rate and volume of storm water run-off, the largest peak flow rate increase was experienced during the 2 year 1 hour storm event, where the anticipated flow rate increased by 5.1 cfs, as compared to natural condition. This increase is being mitigated by the proposed bio-retention / detention basin located on the eastern portion of the site. Basin routing calculations will be provided during the final engineering.

<table>
<thead>
<tr>
<th>DMA ‘B’ - UNIT HYDROGRAPH - PEAK FLOW RATE (cfs)</th>
<th>2 YEAR</th>
<th>10 YEAR</th>
<th>100 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXISTING</td>
<td>DEVELOPED</td>
<td>EXISTING</td>
</tr>
<tr>
<td>1 HOUR</td>
<td>8.4</td>
<td>13.5</td>
<td>21.9</td>
</tr>
<tr>
<td>3 HOUR</td>
<td>4.6</td>
<td>9.4</td>
<td>15.3</td>
</tr>
<tr>
<td>6 HOUR</td>
<td>3.7</td>
<td>8.8</td>
<td>11.8</td>
</tr>
<tr>
<td>24 HOUR</td>
<td>0.5</td>
<td>3.5</td>
<td>5.2</td>
</tr>
</tbody>
</table>

The largest storm volume increase was experienced during the 10 year 24 hour storm event, where the anticipated run-off is increased by 2.7 acre feet from the natural condition. This increase is being mitigated by the proposed infiltration/detention basin located on the southeast corner of the site.

<table>
<thead>
<tr>
<th>DMA ‘B’ - UNIT HYDROGRAPH – STORM VOLUME (ac-ft)</th>
<th>2 YEAR</th>
<th>10 YEAR</th>
<th>100 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EXISTING</td>
<td>DEVELOPED</td>
<td>EXISTING</td>
</tr>
<tr>
<td>1 HOUR</td>
<td>0.2</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>3 HOUR</td>
<td>0.2</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>6 HOUR</td>
<td>0.2</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>24 HOUR</td>
<td>0.3</td>
<td>2.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Hydromodification (Hydraulic Condition of Concern ~ H.C.O.C.)

Development of the site is anticipated to both increase the storm run-off volume and decrease the time of concentration. ‘Hydromodification’ will be addressed by mimicking the pre-development hydrograph with the post-development hydrograph for the 2-year, 24-hour return frequency storm. By sizing the infiltration basin to capture and detain the largest storm volume increase, the basin will then be able address hydromodification by slowly metering out the retained volume at a flow rate less than or equal to the pre-development condition flow rates. As stated previously, the largest storm volume increase was experienced during the 10 year 24 hour storm event, where the anticipated run-off increased by 2.7 acre feet from the natural condition. Therefore, the infiltration basin will be preliminarily sized to retain 2.7 acre feet above. Basin routing and outlet structure details will be provided upon final engineering.

Methodology

This hydrology report is to be used only to analyze flow to, through, and out of the site using the Riverside County Rational Method. In regard to pipe sizing, the hydrology programs were utilized only as a tool for obtaining preliminary sizing of the storm drain facilities by allowing the program to determine minimum pipe sizes. The actual storm drain system and pipe sizes shall be designed per Riverside County Flood Control District criteria during final engineering. Civil Design Version 7.0 Computer Software Program and AES Engineering Software 2011 version were used in generating the hydrological and hydraulic analysis for this report.

Conclusion

Based upon the results of this preliminary report, it is expected that drainage facilities discussed above will adequately protect the site area from flood damage associated with the 100-year storm event. The proposed facilities, with ultimate development and adequate maintenance, will convey flows safely through the site area in accordance with Riverside County requirements.
TR 36294 LOT 8
SEE 2017 ANALYSIS FOR TR 36294
INCLUDED IN APPENDIX 4

PRELIMINARY HYDROLOGY MAP
BEDFORD COMMERCIAL SITE
EXISTING CONDITION
TENTATIVE TRACT MAP 37788
Appendix 8: Source Control

Pollutant Sources/Source Control Checklist
Appendix 8

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

How to use this worksheet (also see instructions in Section H of the 2018 SMR WQMP Template):

1. Review Column 1 and identify which of these potential sources of stormwater pollutants apply to your site. Check each box that applies.

2. Review Column 2 and incorporate all of the corresponding applicable BMPs in your WQMP Exhibit.

3. Review Columns 3 and 4 and incorporate all of the corresponding applicable permanent controls and operational BMPs in your WQMP. Use the format shown in Table H.1 of this WQMP Template. Describe your specific BMPs in an accompanying narrative, and explain any special conditions or situations that required omitting BMPs or substituting alternative BMPs for those shown here.

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Sources of Runoff Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ A. On-site storm drain inlets</td>
<td>☑ Locations of inlets.</td>
<td>☑ Mark all inlets with the words “Only Rain Down the Storm Drain” or similar. Catch Basin Markers may be available from the Riverside County Flood Control and Water Conservation District, call 951.955.1200 to verify.</td>
<td>☑ Maintain and periodically repaint or replace inlet markings.</td>
</tr>
<tr>
<td>☑ B. Interior floor drains and elevator shaft sump pumps</td>
<td>☑ State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer.</td>
<td>☑ Inspect and maintain drains to prevent blockages and overflow.</td>
<td></td>
</tr>
<tr>
<td>☑ C. Interior parking garages</td>
<td>☑ State that parking garage floor drains will be plumbed to the sanitary sewer.</td>
<td>☑ Inspect and maintain drains to prevent blockages and overflow.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 8

Stormwater Pollutant Sources/Source Control Checklist

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential Sources of Runoff Pollutants</td>
<td>2 Permanent Controls—Show on WQMP Drawings</td>
</tr>
<tr>
<td>☑ D1. Need for future indoor & structural pest control</td>
<td>☑ Note building design features that discourage entry of pests.</td>
</tr>
<tr>
<td>☑ D2. Landscape/Outdoor Pesticide Use</td>
<td>☑ State that final landscape plans will accomplish all of the following.</td>
</tr>
<tr>
<td>☑ ☑ Show locations of native trees or areas of shrubs and ground cover to be undisturbed and retained.</td>
<td>☑ Preserve existing native trees, shrubs, and ground cover to the maximum extent possible.</td>
</tr>
<tr>
<td>☑ ☑ Show self-renewing landscape areas, if any.</td>
<td>☑ Design landscaping to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution.</td>
</tr>
<tr>
<td>☑ ☑ Show stormwater treatment and hydrograph modification management BMPs.</td>
<td>☑ Where landscaped areas are used to retain or detain stormwater, specify plants that are tolerant of saturated soil conditions.</td>
</tr>
<tr>
<td>☑ ☑ Consider using pest-resistant plants, especially adjacent to hardscape. To insure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.</td>
<td>☑ Provide Integrated Pest Management information to owners, lessees, and operators.</td>
</tr>
<tr>
<td>☑ ☑ ☑ Maintain landscaping using minimum or no pesticides.</td>
<td>☑ See applicable operational BMPs in “What you should know for,...Landscape and Gardening” at http://www.rcwaterhed.org/about/materials-library/9f1-5fb6f252b6f76d39-d810</td>
</tr>
<tr>
<td>☑ ☑ ☑ Provide IPM information to new owners, lessees and operators.</td>
<td>☑</td>
</tr>
</tbody>
</table>
Appendix 8
STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

| IF THESE SOURCES WILL BE ON THE PROJECT SITE ... | ... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE |
|---|--|---------------------|
| **E. Pools, spas, ponds, decorative fountains, and other water features.** |
| ![Image](image_url) | ![Image](image_url) | ![Image](image_url) |
| **F. Food service** |
| ![Image](image_url) | ![Image](image_url) | ![Image](image_url) |
| **G. Refuse areas** |
| ![Image](image_url) | ![Image](image_url) | ![Image](image_url) |

See applicable operational BMPs in “Guidelines for Maintaining Your Swimming Pool, Jacuzzi and Garden Fountain” at: [link](http://www.rcwatershed.org/about/materials-library/#145046020t-33-b/358c9-6008)

See the brochure, “The Food Service Industry Best Management Practices for Restaurants, Grocery Stores, Delicatessens and Bakeries” at: [link](http://www.rcwatershed.org/about/materials-library/#1450389296-66-b8af0b-53a9)

Provide this brochure to new site owners, lessees, and operators.

*State how the following will be implemented:

 Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post “no hazardous materials” signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, “Waste Handling and Disposal” in the CASQA Stormwater Quality Handbooks at [website](www.cabmphandbooks.com)*
Appendix 8

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential Sources of Runoff Pollutants</td>
<td>2 Permanent Controls—Show on WQMP Drawings</td>
</tr>
<tr>
<td>□ H. Industrial processes.</td>
<td>□ Show process area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Permanent Controls—List in WQMP Table and Narrative</th>
<th>4 Operational BMPs—Include in WQMP Table and Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ If industrial processes are to be located on site, state: “All process activities to be performed indoors. No processes to drain to exterior or to storm drain system.”</td>
<td>□ See Fact Sheet SC-10, “Non-Stormwater Discharges” in the CASQA Stormwater Quality Handbooks at www.cabmphardbooks.com</td>
</tr>
<tr>
<td></td>
<td>See the brochure “Industrial & Commercial Facilities Best Management Practices for Industrial, Commercial Facilities” at: http://www.rcwatershed.org/about/materials-library/#1450339926766-61a8a00b-53a9</td>
</tr>
</tbody>
</table>

□ I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.)	□ Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or run-off from area.
	□ Storage of non-hazardous liquids shall be covered by a roof and/or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults.
	□ Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site.
	□ Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. Where appropriate, reference documentation of compliance with the requirements of Hazardous Materials Programs for:
	▪ Hazardous Waste Generation
	▪ Hazardous Materials Release Response and Inventory
	▪ California Accidental Release (CalARP)
	▪ Aboveground Storage Tank
	▪ Uniform Fire Code Article 80 Section 103(b) & (e) 1991
	▪ Underground Storage Tank www.echealth.org/groups/hazmat/
STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential Sources of Runoff Pollutants</td>
<td>2 Permanent Controls—Show on WQMP Drawings</td>
</tr>
<tr>
<td>⭕ J. Vehicle and Equipment Cleaning</td>
<td>⭕ Show on drawings as appropriate:</td>
</tr>
<tr>
<td></td>
<td>(1) Commercial/industrial facilities having vehicle/equipment cleaning</td>
</tr>
<tr>
<td></td>
<td>needs shall either provide a covered, berm area for washing activities</td>
</tr>
<tr>
<td></td>
<td>or discourage vehicle/equipment washing by removing hose bibs and</td>
</tr>
<tr>
<td></td>
<td>installing signs prohibiting such uses.</td>
</tr>
<tr>
<td></td>
<td>(2) Multi-dwelling complexes shall have a paved, berm, and covered</td>
</tr>
<tr>
<td></td>
<td>car wash area (unless car washing is prohibited on-site and hoses are</td>
</tr>
<tr>
<td></td>
<td>provided with an automatic shut-off to discourage such use).</td>
</tr>
<tr>
<td></td>
<td>(3) Washing areas for cars, vehicles, and equipment shall be paved,</td>
</tr>
<tr>
<td></td>
<td>designed to prevent run-on to or runoff from the area, and plumbed</td>
</tr>
<tr>
<td></td>
<td>to drain to the sanitary sewer.</td>
</tr>
<tr>
<td></td>
<td>(4) Commercial car wash facilities shall be designed such that no</td>
</tr>
<tr>
<td></td>
<td>runoff from the facility is discharged to the storm drain system.</td>
</tr>
<tr>
<td></td>
<td>Wastewater from the facility shall discharge to the sanitary sewer,</td>
</tr>
<tr>
<td></td>
<td>or a wastewater reclamation system shall be installed.</td>
</tr>
<tr>
<td>3 Permanent Controls—List in WQMP Table and Narrative</td>
<td></td>
</tr>
<tr>
<td>⭕ If a car wash area is not provided, describe any measures taken to discourage on-site car washing and explain how these will be enforced.</td>
<td></td>
</tr>
<tr>
<td>4 Operational BMPs—Include in WQMP Table and Narrative</td>
<td></td>
</tr>
<tr>
<td>⭕ Describe operational measures to implement the following (if applicable):</td>
<td></td>
</tr>
<tr>
<td>Washwater from vehicle and equipment washing operations shall not be discharged to the storm drain system. Refer to “Outdoor Cleaning Activities and Professional Mobile Service Providers” for many of the Potential Sources of Runoff Pollutants categories below. Brochure can be found at: http://www.rcwatershed.org/about/materials-library/1450389926766-618aaf0b-53a9</td>
<td></td>
</tr>
<tr>
<td>⭕ Car dealerships and similar may rinse cars with water only.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 8

STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

| 1 | Potential Sources of Runoff Pollutants | 2 | Permanent Controls—Show on WQMP Drawings | 3 | Permanent Controls—List in WQMP Table and Narrative | 4 | Operational BMPs—Include in WQMP Table and Narrative |
|---|---|---|---|---|---|---|
| □ | K. Vehicle/Equipment Repair and Maintenance | □ | Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to prevent runoff and runoff of stormwater. | □ | State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. | □ | In the Stormwater Control Plan, note that all of the following restrictions apply to use the site: |
| □ | | □ | Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid-containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains shall not be installed within the secondary containment areas. | □ | State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency’s requirements. | □ | No person shall dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. |
| □ | | □ | Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. | □ | State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency’s requirements. | □ | No vehicle fluid removal shall be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids shall be contained or drained from the vehicle immediately. |

Refer to “Automotive Maintenance & Car Care Best Management Practices for Auto Body Shops, Auto Repair Shops, Car Dealerships, Gas Stations and Fleet Service Operations; "Outdoor Cleaning Activities;" and "Professional Mobile Service Providers" for many of the Potential Sources of Runoff Pollutants. Brochures can be found at: http://www.rcwatershed.org/about/materials-library/

#1450389926766-61e8a0b-53a9
STORMWATER POLLUTANT SOURCES/SOURCE CONTROL CHECKLIST

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential Sources of Runoff Pollutants</td>
<td>2 Permanent Controls—Show on WQMP Drawings</td>
</tr>
<tr>
<td>✗ Fuel Dispensing Areas</td>
<td>✗ Fueling areas(^6) shall have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are: a) graded at the minimum slope necessary to prevent ponding; and b) separated from the rest of the site by a grade break that prevents run-on of stormwater to the maximum extent practicable.</td>
</tr>
<tr>
<td>✗ Fueling areas shall be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover’s minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area(^1).] The canopy [or cover] shall not drain onto the fueling area.</td>
<td>3 Permanent Controls—List in WQMP Table and Narrative</td>
</tr>
<tr>
<td>4 Operational BMPs—Include in WQMP Table and Narrative</td>
<td>✗ The property owner shall dry sweep the fueling area routinely.</td>
</tr>
<tr>
<td></td>
<td>✗ See the Fact Sheet SD-30, “Fueling Areas” in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com</td>
</tr>
</tbody>
</table>

\(^6\) The fueling area shall be defined as the area extending a minimum of 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater.
<table>
<thead>
<tr>
<th>Potential Sources of Runoff Pollutants</th>
<th>2 Permanent Controls—Show on WQMP Drawings</th>
<th>3 Permanent Controls—List in WQMP Table and Narrative</th>
<th>4 Operational BMPs—Include in WQMP Table and Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Loading Docks</td>
<td>Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks shall be covered and/or graded to minimize runoff to and runoff from the loading area. Roof downspouts shall be positioned to direct stormwater away from the loading area. Water from loading dock areas shall be drained to the sanitary sewer, or diverted and collected for ultimate discharge to the sanitary sewer.</td>
<td>Loading dock areas draining directly to the sanitary sewer shall be equipped with a spill control valve or equivalent device, which shall be kept closed during periods of operation. Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer.</td>
<td>Move loaded and unloaded items indoors as soon as possible. See Fact Sheet SC-30, “Outdoor Loading and Unloading,” in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com</td>
</tr>
</tbody>
</table>
Appendix 8

Stormwater Pollutant Sources/Source Control Checklist

<table>
<thead>
<tr>
<th>IF THESE SOURCES WILL BE ON THE PROJECT SITE ...</th>
<th>... THEN YOUR WQMP SHOULD INCLUDE THESE SOURCE CONTROL BMPs, AS APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Potential Sources of Runoff Pollutants</td>
<td>2 Permanent Controls—Show on WQMP Drawings</td>
</tr>
<tr>
<td>☑ N. Fire Sprinkler Test Water</td>
<td>☑ Provide a means to drain fire sprinkler test water to the sanitary sewer.</td>
</tr>
<tr>
<td>☐ Miscellaneous Drain or Wash Water or Other Sources</td>
<td>☑ Boiler drain lines shall be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system.</td>
</tr>
<tr>
<td>☐ Boiler drain lines</td>
<td>☑ Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system.</td>
</tr>
<tr>
<td>☐ Condensate drain lines</td>
<td>☐ Rooftop equipment with potential to produce pollutants shall be roofed and/or have secondary containment.</td>
</tr>
<tr>
<td>☐ Rooftop equipment</td>
<td>☐ Any drainage sumps on-site shall feature a sediment sump to reduce the quantity of sediment in pumped water.</td>
</tr>
<tr>
<td>☐ Drainage sumps</td>
<td>☑ Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff.</td>
</tr>
<tr>
<td>☐ Roofing, gutters, and trim</td>
<td>☐ Include controls for other sources as specified by local reviewer.</td>
</tr>
<tr>
<td>☐ Other sources</td>
<td>☑ See the note in Fact Sheet SC-41, “Building and Grounds Maintenance,” in the CASQA Stormwater Quality Handbooks at www.calmfphandbooks.com</td>
</tr>
</tbody>
</table>
Stormwater Pollutant Sources/Source Control Checklist

If these sources will be on the project site ...

<table>
<thead>
<tr>
<th>1</th>
<th>Permanent Controls—Show on WQMP Drawings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Permanent Controls—List in WQMP Table and Narrative</td>
</tr>
<tr>
<td>3</td>
<td>Operational BMPs—Include in WQMP Table and Narrative</td>
</tr>
</tbody>
</table>

Then your WQMP should include these source control BMPs, as applicable

- **1. Potential Sources of Runoff Pollutants**
 - Plazas, sidewalks, and parking lots.

- **2. Permanent Controls—Show on WQMP Drawings**
 - Sweep plazas, sidewalks, and parking lots regularly to prevent accumulation of litter and debris. Collect debris from pressure washing to prevent entry into the storm drain system. Collect washwater containing any cleaning agent or degreaser and discharge to the sanitary sewer not to a storm drain.
Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

- The BMP operation and Maintenance agreement will be provided upon ‘Final WQMP’ approval.
CITY OF CORONA
WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP
MAINTENANCE AND RIGHT OF ENTRY AGREEMENT
WITH ARANTINE HILLS HOLDINGS, LP

1. PARTIES AND DATE.

THIS WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP MAINTENANCE AND RIGHT OF ENTRY AGREEMENT ("Agreement") is made and entered into in the City of Corona, California, this 11TH day of January 2018 by and between the City of Corona, a California municipal corporation ("City"), and ARANTINE HILLS HOLDINGS, LP, a Delaware Limited Partnership, with its principal place of business at 85 Enterprise, Suite 450, Aliso Viejo, CA 92656 ("Owner"). This Agreement applies to property located at APN No. 279-180-024-5, 279-190-045-5, 282-030-003-6, 279-240-018-5, 282-030-004-7, 282-030-006-9, 282-030-008-1, 282-030-005-8 in the County of Riverside, State of California.

2. RECITALS.

2.1 The Owner owns real property ("Property") in the City of Corona, County of Riverside, State of California, more specifically described in Exhibit "A" and depicted in Exhibit "B", each of which exhibits is attached hereto and incorporated herein by this reference.

2.2 At the time of initial approval of Owner’s development project known as Arantine Hills, Tract 37030 within the Property, the City required the project to employ Best Management Practices, hereinafter referred to as "BMPs," to minimize pollutants in urban runoff.

2.3 The Owner has chosen to install and/or implement BMPs as described in the Water Quality Management Plan, on file with the City, hereinafter referred to as "WQMP", to minimize pollutants in urban runoff and to minimize other adverse impacts of urban runoff.

2.4 The WQMP has been certified by the Owner and reviewed and approved by the City.

2.5 The BMPs, with installation and/or implementation on private property and draining only private property, are part of a private facility with all maintenance or replacement, therefore, the sole responsibility of the Owner in accordance with the terms of this Agreement.

2.6 The Owner is aware that periodic and continuous maintenance, including, but not necessarily limited to, filter material replacement and sediment removal, is required to assure peak performance of all BMPs in the WQMP and that, furthermore, such maintenance activity will require compliance with all Local, State, or Federal laws.
and regulations, including those pertaining to confined space and waste disposal methods, in effect at the time such maintenance occurs.

3. **TERMS.**

3.1 **Responsibility for Operation and Maintenance of BMPs.** Owner shall diligently maintain all BMPs in a manner assuring peak performance at all times. All reasonable precautions shall be exercised by Owner and Owner’s representative or contractor in the removal and extraction of any material(s) from the BMPs and the ultimate disposal of the material(s) in a manner consistent with all relevant laws and regulations in effect at the time. As may be requested from time to time by the City, the Owner shall provide the City with documentation identifying the material(s) removed, the quantity, and disposal destination.

3.2 **Right of Access.** Owner hereby provides the City or City’s designee complete access, of any duration, to the BMPs and their immediate vicinity at any time, upon reasonable notice, or in the event of emergency, as determined by City’s Director of Public Works (“Director”), no advance notice, for the purpose of inspection, sampling, testing of the BMPs, and in case of emergency, to undertake, in the City’s sole discretion, necessary repairs or other preventative measures at Owner’s expense as provided in paragraph 3 below. City shall make every effort at all times to minimize or avoid interference with Owner’s use of the Property.

3.3 **City Maintenance at Owner’s Expense.** In the event Owner, or its successors or assigns, fails to accomplish the necessary maintenance contemplated by this Agreement, within five (5) days of being given written notice by the City, the City is hereby authorized to cause any maintenance necessary to be done and charge the entire cost and expense to the Owner or Owner’s successors or assigns, including administrative costs, attorneys fees and interest thereon at the maximum rate authorized by the Civil Code from the date of the notice of expense until paid in full. The City, at its sole election, may make these costs to be a lien upon the property that may be collected at the same time and in the same manner as ordinary municipal taxes as provided in Government Code section 38773.5. Nothing in this section or this Agreement creates an obligation by the City to maintain or repair any BMP, nor does this section prohibit the City from pursuing other legal recourse against Owner.

3.4 **Recording.** This Agreement shall be recorded in the Office of the Recorder of Riverside County, California, at the expense of the Owner and shall constitute notice to all successors and assigns of the title to said Property of the obligation herein set forth, and also a lien in such amount as will fully reimburse the City, including interest as herein above set forth, subject to foreclosure in event of default in payment.

3.5 **Attorney’s Fees.** In event of legal action occasioned by any default or action of the Owner, or its successors or assigns, the Owner and its successors or assigns agree(s) to pay all costs incurred by the City in enforcing the terms of this Agreement,
including reasonable attorney’s fees and costs, and that the same shall become a part of the lien against said Property.

3.6 **Covenant.** It is the intent of the parties hereto that burdens and benefits herein undertaken shall constitute covenants that run with said Property and constitute a lien there against.

3.7 **Binding on Successors.** The obligations herein undertaken shall be binding upon the heirs, successors, executors, administrators and assigns of the parties hereto. The term “Owner” shall include not only the present Owner, but also its heirs, successors, executors, administrators, and assigns. Owner shall notify any successor to title of all or part of the Property about the existence of this Agreement. Owner shall provide such notice prior to such successor obtaining an interest in all or part of the Property. Owner shall provide a copy of such notice to the City at the same time such notice is provided to the successor.

3.8 **Indemnity and Insurance.** The Owner, its heirs, successors, executors, administrators and assigns agree to defend, indemnify and holds harmless the City, its officials, employees and its authorized agents from any and all damages, accidents, casualties, occurrences or claims (collectively, “Claims”) which might arise or be asserted against the City and which are in any way connected with the construction, operation, presence, existence or maintenance of the BMP by the Owner, or from any personal injury or property damage that may result from the City or other public entities entering the Property under Sections 2 or 3 of this Agreement; provided, however, that in no event shall Owner, its heirs, successors, executors, administrators and assigns be obligated to defend, indemnify or hold harmless the City, its officials, employees, and its authorized agents from any Claims arising from the City’s or its officials, employees, and its authorized agents active negligence or willful misconduct while the City enters the Property under Section 2 or 3 of this Agreement. The Owner shall maintain liability insurance in commercially reasonable amounts, but not less than $1,000,000.00, covering the BMP and City. The City shall require proof of insurance to be provided to City on a regular basis as determined by the City.

3.9 **Time of the Essence.** Time is of the essence in the performance of this Agreement.

3.10 **Notice.** Any notice to a party required or called for in this Agreement shall be served in person, or by deposit in the U.S. Mail, first class postage prepaid, to the address set forth below. Notice(s) shall be deemed effective upon receipt, or seventy-two (72) hours after deposit in the U.S. Mail, whichever is earlier. A party may change a notice address only by providing written notice thereof to the other party.
IF TO CITY:

City of Corona
400 South Vicentia Avenue
Corona, CA 92882
Attn: Lisa Mobley

IF TO OWNER:

[SIGNATURES ON FOLLOWING PAGE]

[REMAINDER OF PAGE LEFT INTENTIONALLY BLANK]
SIGNATURE PAGE TO
CITY OF CORONA
WATER QUALITY MANAGEMENT PLAN AND STORMWATER BMP
MAINTENANCE AND RIGHT OF ENTRY AGREEMENT
WITH ARANTINE HILLS HOLDINGS, LP

IN WITNESS THEREOF, the parties hereto have executed this Agreement as of
the date first written above.

CITY OF CORONA
a California municipal corporation

By: _________________________
Nelson D. Nelson
Public Works Director

Guardian Capital

By: _________________________
Signature

Name (Print)
Title (Print)

By: _________________________
Signature

Name (Print)
Title (Print)

ATTEST:

City Clerk

ATTEST:

[***INSERT NAME***]
[***INSERT TITLE***]

[***NOTE (READ AND DELETE THIS BLOCK BEFORE USING MODEL): SIGNATURE BLOCKS CAN VARY DEPENDING UPON THE APPLICANT’S TYPE OF LEGAL ENTITY (E.G. CORPORATION; GENERAL PARTNERSHIP; LIMITED PARTNERSHIP; LIMITED LIABILITY PARTNERSHIP OR COMPANY; OR AN INDIVIDUAL). THIS MODEL CONTAINS A GENERAL FRAMEWORK WHICH WILL WORK FOR MOST CORPORATIONS, INDIVIDUAL (NON-CORPORATE) PARTNERSHIPS AND INDIVIDUAL SOLE PROPRIETORSHIPS. PLEASE REFER TO THE CITY CLERK’S “SIGNATURE REQUIREMENT” MEMO ON THE INFO WEB FOR COMPLETE INFORMATION***]
NOTARY ACKNOWLEDGEMENT OF CITY

STATE OF CALIFORNIA)
COUNTY OF __________)

On ____________________________ before me, (here insert name and title of the officer), personally appeared ____________________________, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under penalty of perjury under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature of Notary Public: (Seal)

__

NOTARY ACKNOWLEDGEMENT OF CITY

STATE OF CALIFORNIA)
COUNTY OF __________)

On ____________________________ before me, (here insert name and title of the officer), personally appeared ____________________________, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under penalty of perjury under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature of Notary Public: (Seal)

__
NOTARY ACKNOWLEDGEMENT OF OWNER

STATE OF CALIFORNIA
COUNTY OF ____________

On __________________________ before me, (here insert name and title of the officer), personally appeared ____________________________, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.

I certify under penalty of perjury under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Signature of Notary Public: (Seal)
EXHIBIT “A”
(LEGAL DESCRIPTION)
EXHIBIT “B”
(MAP/ILLUSTRATION)
Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information
3.1 **INFILTRATION BASIN**

<table>
<thead>
<tr>
<th>Type of BMP</th>
<th>LID - Infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Mechanisms</td>
<td>Infiltration, Evapotranspiration (when vegetated), Evaporation, and Sedimentation</td>
</tr>
<tr>
<td>Maximum Treatment Area</td>
<td>50 acres</td>
</tr>
<tr>
<td>Other Names</td>
<td>Bioinfiltration Basin</td>
</tr>
</tbody>
</table>

Description

An Infiltration Basin is a flat earthen basin designed to capture the design capture volume, \(V_{\text{BMP}} \). The stormwater infiltrates through the bottom of the basin into the underlying soil over a 72 hour drawdown period. Flows exceeding \(V_{\text{BMP}} \) must discharge to a downstream conveyance system. Trash and sediment accumulate within the forebay as stormwater passes into the basin. Infiltration basins are highly effective in removing all targeted pollutants from stormwater runoff.

See Appendix A, and Appendix C, Section 1 of Basin Guidelines, for additional requirements.

Siting Considerations

The use of infiltration basins may be restricted by concerns over ground water contamination, soil permeability, and clogging at the site. See the applicable WQMP for any specific feasibility considerations for using infiltration BMPs. Where this BMP is being used, the soil beneath the basin must be thoroughly evaluated in a geotechnical report since the underlying soils are critical to the basin’s long term performance. To protect the basin from erosion, the sides and bottom of the basin must be vegetated, preferably with native or low water use plant species.

In addition, these basins may not be appropriate for the following site conditions:

- Industrial sites or locations where spills of toxic materials may occur
- Sites with very low soil infiltration rates
- Sites with high groundwater tables or excessively high soil infiltration rates, where pollutants can affect ground water quality
- Sites with unstabilized soil or construction activity upstream
- On steeply sloping terrain
- Infiltration basins located in a fill condition should refer to Appendix A of this Handbook for details on special requirements/restrictions

![Figure 1 – Infiltration Basin](image)
Setbacks

Always consult your geotechnical engineer for site specific recommendations regarding setbacks for infiltration trenches. Recommended setbacks are needed to protect buildings, existing trees, walls, onsite or nearby wells, streams, and tanks. Setbacks should be considered early in the design process since they can affect where infiltration facilities may be placed and how deep they are allowed to be. For instance, depth setbacks can dictate fairly shallow facilities that will have a larger footprint and, in some cases, may make an infiltration basin infeasible. In that instance, another BMP must be selected.

Infiltration basins typically must be set back:

- 10 feet from the historic high groundwater (measured vertically from the bottom of the basin, as shown in Figure 2)
- 5 feet from bedrock or impermeable surface layer (measured vertically from the bottom of the basin, as shown in Figure 2)
- From all existing mature tree drip lines as indicated in Figure 2 (to protect their root structure)
- 100 feet horizontally from wells, tanks or springs

Setbacks to walls and foundations must be included as part of the Geotechnical Report. All other setbacks shall be in accordance with applicable standards of the District’s *Basin Guidelines* (Appendix C).

Figure 2 – Setback Requirements
Forebay

A concrete forebay shall be provided to reduce sediment clogging and to reduce erosion. The forebay shall have a design volume of at least 0.5% V_{BMP} and a minimum 1 foot high concrete splashwall / berm. Full height notch-type weir(s), offset from the line of flow from the basin inlet to prevent short circuiting, shall be used to outlet the forebay. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

Overflow

Flows exceeding V_{BMP} must discharge to an acceptable downstream conveyance system. Where an adequate outlet is present, an overflow structure may be used. Where an embankment is present, an emergency spillway may be used instead. Overflows must be placed just above the design water surface for V_{BMP} and be near the outlet of the system. The overflow structure shall be similar to the District’s Standard Drawing CB 110. Additional details may be found in the District’s Basin Guidelines (Appendix C).
Landscaping Requirements
Basin vegetation provides erosion protection, improves sediment removal and assists in allowing infiltration to occur. The basin surface and side slopes shall be planted with native grasses. Proper landscape management is also required to ensure that the vegetation does not contribute to water pollution through pesticides, herbicides, or fertilizers. Landscaping shall be in accordance with County of Riverside Ordinance 859 and the District’s *Basin Guidelines* (Appendix C), or other guidelines issued by the Engineering Authority.

Maintenance
Normal maintenance of an infiltration basin includes the maintenance of landscaping, debris and trash removal from the surface of the basin, and tending to problems associated with standing water (vectors, odors, etc.). Significant ponding, especially more than 72 hours after an event, may indicate that the basin surface is no longer providing sufficient infiltration and requires aeration. See the District’s *Basin Guidelines* (Appendix C) for additional requirements (i.e., fencing, maintenance access, etc.).

Table 1 - Inspection and Maintenance

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Inspection and Maintenance Activity</th>
</tr>
</thead>
</table>
| **Ongoing** | • Maintain vegetation as needed. Use of fertilizers, pesticides and herbicides should be strenuously avoided to ensure they don’t contribute to water pollution. If appropriate native plant selections and other IPM methods are used, such products shouldn’t be needed. If such projects are used,
 ○ Products shall be applied in accordance with their labeling, especially in relation to application to water, and in areas subjected to flooding.
 ○ Fertilizers should not be applied within 15 days before, after, or during the rain season.
• Remove debris and litter from the entire basin to minimize clogging and improve aesthetics.
• Check for obvious problems and repair as needed. Address odor, insects, and overgrowth issues associated with stagnant or standing water in the basin bottom. There should be no long-term ponding water.
• Check for erosion and sediment laden areas in the basin. Repair as needed. Clean forebay if needed.
• Revegetate side slopes where needed. |
| **Annually** | • Inspection of hydraulic and structural facilities. Examine the inlet for blockage, the embankment and spillway integrity, as well as damage to any structural element.
• Check for erosion, slumping and overgrowth. Repair as needed.
• Check basin depth for sediment build up and reduced total capacity. Scrape bottom as needed and remove sediment. Restore to original cross-section and infiltration rate. Replant basin vegetation.
• Verify the basin bottom is allowing acceptable infiltration. Use a disc or other method to aerate basin bottom only if there is actual significant loss of infiltrative capacity, rather than on a routine basis\(^1\).
• No water should be present 72 hours after an event. No long term standing water should be present at all. No algae formation should be visible. Correct problem as needed. |

1. CA Stormwater BMP Handbook for New Development and Significant Redevelopment
Table 2 - Design and Sizing Criteria for Infiltration Basins

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Infiltration Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Volume</td>
<td>V_{BMP}</td>
</tr>
<tr>
<td>Forebay Volume</td>
<td>0.5% V_{BMP}</td>
</tr>
<tr>
<td>Drawdown time (maximum)</td>
<td>72 hours</td>
</tr>
<tr>
<td>Maximum tributary area</td>
<td>50 acres</td>
</tr>
<tr>
<td>Minimum infiltration rate</td>
<td>Must be sufficient to drain the basin within the required Drawdown time over the life of the BMP. The WQMP may include specific requirements for minimum tested infiltration rates.</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>5 feet</td>
</tr>
<tr>
<td>Spillway erosion control</td>
<td>Energy dissipators to reduce velocities 1</td>
</tr>
<tr>
<td>Basin Slope</td>
<td>0%</td>
</tr>
<tr>
<td>Freeboard (minimum)</td>
<td>1 foot 1</td>
</tr>
<tr>
<td>Historic High Groundwater Setback (max)</td>
<td>10 feet</td>
</tr>
<tr>
<td>Bedrock/impermeable layer setback (max)</td>
<td>5 feet</td>
</tr>
<tr>
<td>Tree setbacks</td>
<td>Mature tree drip line must not overhang the basin</td>
</tr>
<tr>
<td>Set back from wells, tanks or springs</td>
<td>100 feet</td>
</tr>
<tr>
<td>Set back from foundations</td>
<td>As recommended in Geotechnical Report</td>
</tr>
</tbody>
</table>

1. Ventura County’s Technical Guidance Manual for Stormwater Quality Control Measures
2. CA Stormwater BMP Handbook for New Development and Significant Redevelopment

Note: The information contained in this BMP Factsheet is intended to be a summary of design considerations and requirements. Additional information which applies to all detention basins may be found in the District’s Basin Guidelines (Appendix C). In addition, information herein may be superseded by other guidelines issued by the co-permittee.

INfiltration Basin Sizing Procedure

1. Find the Design Volume, V_{BMP}.
 a) Enter the Tributary Area, A_T.
 b) Enter the Design Volume, V_{BMP}, determined from Section 2.1 of this Handbook.

2. Determine the Maximum Depth.
 a) Enter the infiltration rate. The infiltration rate shall be established as described in Appendix A: “Infiltration Testing”.
 b) Enter the design Factor of Safety from Table 1 in Appendix A: “Infiltration Testing”.
 c) The spreadsheet will determine D_1, the maximum allowable depth of the basin based on the infiltration rate along with the maximum drawdown time (72 hours) and the Factor of Safety.
 \[
 D_1 = \frac{[(t) \times (I)]}{12s}
 \]
 Where
 - I = site infiltration rate (in/hr)
 - s = safety factor
 - t = drawdown time (maximum 72 hours)
d) Enter the depth of freeboard.
e) Enter the depth to the historic high groundwater level measured from the top of the basin.
f) Enter the depth to the top of bedrock or other impermeable layer measured from the finished grade.
g) The spreadsheet will determine D_2, the total basin depth (including freeboard, if used) of the basin, based on restrictions to the depth by groundwater and an impermeable layer.

\[
D_2 = \text{Depth to groundwater} - (10 + \text{freeboard}) \text{ (ft)};
\]
or
\[
D_2 = \text{Depth to impermeable layer} - (5 + \text{freeboard}) \text{ (ft)}
\]
Whatever is least.
h) The spreadsheet will determine the maximum allowable effective depth of basin, D_{MAX}, based on the smallest value between D_1 and D_2. D_{MAX} is the maximum depth of water only and does not include freeboard. D_{MAX} shall not exceed 5 feet.

3. Basin Geometry

a) Enter the basin side slopes, z (no steeper than 4:1).
b) Enter the proposed basin depth, d_b excluding freeboard.
c) The spreadsheet will determine the minimum required surface area of the basin:

\[
A_s = \frac{V_{\text{BMP}}}{d_b}
\]

Where A_s = minimum area required (ft2)
V_{BMP} = volume of the infiltration basin (ft3)
d_b = proposed depth not to exceed maximum allowable depth, D_{MAX} (ft)

d) Enter the proposed bottom surface area. This area shall not be less than the minimum required surface area.

4. Forebay

A concrete forebay with a design volume of at least 0.5% V_{BMP} and a minimum 1 foot high concrete splashwall shall be provided. Full-height rectangular weir(s) shall be used to outlet the forebay. The weir(s) must be offset from the line of flow from the basin inlet. It is recommended that two weirs be used and that they be located on opposite sides of the forebay (see Figure 2).

a) The spreadsheet will determine the minimum required forebay volume based on 0.5% V_{BMP}.
b) Enter the proposed depth of the forebay berm/splashwall (1 foot minimum).
c) The spreadsheet will determine the minimum required forebay surface area.
d) Enter the width of rectangular weir to be used (minimum 1.5 inches). Weir width should be established based on a 5 minute drawdown time.
Description
An infiltration basin is a shallow impoundment that is designed to infiltrate stormwater. Infiltration basins use the natural filtering ability of the soil to remove pollutants in stormwater runoff. Infiltration facilities store runoff until it gradually exfiltrates through the soil and eventually into the water table. This practice has high pollutant removal efficiency and can also help recharge groundwater, thus helping to maintain low flows in stream systems. Infiltration basins can be challenging to apply on many sites, however, because of soils requirements. In addition, some studies have shown relatively high failure rates compared with other management practices.

California Experience
Infiltration basins have a long history of use in California, especially in the Central Valley. Basins located in Fresno were among those initially evaluated in the National Urban Runoff Program and were found to be effective at reducing the volume of runoff, while posing little long-term threat to groundwater quality (EPA, 1983; Schroeder, 1995). Proper siting of these devices is crucial as underscored by the experience of Caltrans in siting two basins in Southern California. The basin with marginal separation from groundwater and soil permeability failed immediately and could never be rehabilitated.

Advantages
- Provides 100% reduction in the load discharged to surface waters.
- The principal benefit of infiltration basins is the approximation of pre-development hydrology during which a
significant portion of the average annual rainfall runoff is infiltrated and evaporated rather than flushed directly to creeks.

- If the water quality volume is adequately sized, infiltration basins can be useful for providing control of channel forming (erosion) and high frequency (generally less than the 2-year) flood events.

Limitations

- May not be appropriate for industrial sites or locations where spills may occur.

- Infiltration basins require a minimum soil infiltration rate of 0.5 inches/hour, not appropriate at sites with Hydrologic Soil Types C and D.

- If infiltration rates exceed 2.4 inches/hour, then the runoff should be fully treated prior to infiltration to protect groundwater quality.

- Not suitable on fill sites or steep slopes.

- Risk of groundwater contamination in very coarse soils.

- Upstream drainage area must be completely stabilized before construction.

- Difficult to restore functioning of infiltration basins once clogged.

Design and Sizing Guidelines

- Water quality volume determined by local requirements or sized so that 85% of the annual runoff volume is captured.

- Basin sized so that the entire water quality volume is infiltrated within 48 hours.

- Vegetation establishment on the basin floor may help reduce the clogging rate.

Construction/Inspection Considerations

- Before construction begins, stabilize the entire area draining to the facility. If impossible, place a diversion berm around the perimeter of the infiltration site to prevent sediment entrance during construction or remove the top 2 inches of soil after the site is stabilized. Stabilize the entire contributing drainage area, including the side slopes, before allowing any runoff to enter once construction is complete.

- Place excavated material such that it can not be washed back into the basin if a storm occurs during construction of the facility.

- Build the basin without driving heavy equipment over the infiltration surface. Any equipment driven on the surface should have extra-wide ("low pressure") tires. Prior to any construction, rope off the infiltration area to stop entrance by unwanted equipment.

- After final grading, till the infiltration surface deeply.

- Use appropriate erosion control seed mix for the specific project and location.
Infiltration Basin

Performance
As water migrates through porous soil and rock, pollutant attenuation mechanisms include precipitation, sorption, physical filtration, and bacterial degradation. If functioning properly, this approach is presumed to have high removal efficiencies for particulate pollutants and moderate removal of soluble pollutants. Actual pollutant removal in the subsurface would be expected to vary depending upon site-specific soil types. This technology eliminates discharge to surface waters except for the very largest storms; consequently, complete removal of all stormwater constituents can be assumed.

There remain some concerns about the potential for groundwater contamination despite the findings of the NURP and Nightingale (1975; 1987a,b,c; 1989). For instance, a report by Pitt et al. (1994) highlighted the potential for groundwater contamination from intentional and unintentional stormwater infiltration. That report recommends that infiltration facilities not be sited in areas where high concentrations are present or where there is a potential for spills of toxic material. Conversely, Schroeder (1995) reported that there was no evidence of groundwater impacts from an infiltration basin serving a large industrial catchment in Fresno, CA.

Siting Criteria
The key element in siting infiltration basins is identifying sites with appropriate soil and hydrogeologic properties, which is critical for long term performance. In one study conducted in Prince George’s County, Maryland (Galli, 1992), all of the infiltration basins investigated clogged within 2 years. It is believed that these failures were for the most part due to allowing infiltration at sites with rates of less than 0.5 in/hr, basing siting on soil type rather than field infiltration tests, and poor construction practices that resulted in soil compaction of the basin invert.

A study of 23 infiltration basins in the Pacific Northwest showed better long-term performance in an area with highly permeable soils (Hilding, 1996). In this study, few of the infiltration basins had failed after 10 years. Consequently, the following guidelines for identifying appropriate soil and subsurface conditions should be rigorously adhered to.

- Determine soil type (consider RCS soil type ‘A, B or C’ only) from mapping and consult USDA soil survey tables to review other parameters such as the amount of silt and clay, presence of a restrictive layer or seasonal high water table, and estimated permeability. The soil should not have more than 30% clay or more than 40% of clay and silt combined. Eliminate sites that are clearly unsuitable for infiltration.
- Groundwater separation should be at least 3 m from the basin invert to the measured ground water elevation. There is concern at the state and regional levels of the impact on groundwater quality from infiltrated runoff, especially when the separation between groundwater and the surface is small.
- Location away from buildings, slopes and highway pavement (greater than 6 m) and wells and bridge structures (greater than 30 m). Sites constructed of fill, having a base flow or with a slope greater than 15% should not be considered.
- Ensure that adequate head is available to operate flow splitter structures (to allow the basin to be offline) without ponding in the splitter structure or creating backwater upstream of the splitter.
Base flow should not be present in the tributary watershed.

Secondary Screening Based on Site Geotechnical Investigation

- At least three in-hole conductivity tests shall be performed using USBR 7300-89 or Bouwer-Rice procedures (the latter if groundwater is encountered within the boring), two tests at different locations within the proposed basin and the third down gradient by no more than approximately 10 m. The tests shall measure permeability in the side slopes and the bed within a depth of 3 m of the invert.

- The minimum acceptable hydraulic conductivity as measured in any of the three required test holes is 13 mm/hr. If any test hole shows less than the minimum value, the site should be disqualified from further consideration.

- Exclude from consideration sites constructed in fill or partially in fill unless no silts or clays are present in the soil boring. Fill tends to be compacted, with clays in a dispersed rather than flocculated state, greatly reducing permeability.

- The geotechnical investigation should be such that a good understanding is gained as to how the stormwater runoff will move in the soil (horizontally or vertically) and if there are any geological conditions that could inhibit the movement of water.

Additional Design Guidelines

1. **Basin Sizing** - The required water quality volume is determined by local regulations or sufficient to capture 85% of the annual runoff.

2. **Provide pretreatment if sediment loading is a maintenance concern for the basin.**

3. **Include energy dissipation in the inlet design for the basins. Avoid designs that include a permanent pool to reduce opportunity for standing water and associated vector problems.**

4. **Basin invert area should be determined by the equation:**

\[A = \frac{WQV}{kt} \]

where

- \(A \) = Basin invert area (m²)
- \(WQV \) = water quality volume (m³)
- \(k \) = 0.5 times the lowest field-measured hydraulic conductivity (m/hr)
- \(t \) = drawdown time (48 hr)

5. The use of vertical piping, either for distribution or infiltration enhancement shall not be allowed to avoid device classification as a Class V injection well per 40 CFR 146.5(e)(4).
Infiltration Basin

Maintenance

Regular maintenance is critical to the successful operation of infiltration basins. Recommended operation and maintenance guidelines include:

- Inspections and maintenance to ensure that water infiltrates into the subsurface completely (recommended infiltration rate of 72 hours or less) and that vegetation is carefully managed to prevent creating mosquito and other vector habitats.

- Observe drain time for the design storm after completion or modification of the facility to confirm that the desired drain time has been obtained.

- Schedule semiannual inspections for beginning and end of the wet season to identify potential problems such as erosion of the basin side slopes and invert, standing water, trash and debris, and sediment accumulation.

- Remove accumulated trash and debris in the basin at the start and end of the wet season.

- Inspect for standing water at the end of the wet season.

- Trim vegetation at the beginning and end of the wet season to prevent establishment of woody vegetation and for aesthetic and vector reasons.

- Remove accumulated sediment and regrade when the accumulated sediment volume exceeds 10% of the basin.

- If erosion is occurring within the basin, revegetate immediately and stabilize with an erosion control mulch or mat until vegetation cover is established.

- To avoid reversing soil development, scarification or other disturbance should only be performed when there are actual signs of clogging, rather than on a routine basis. Always remove deposited sediments before scarification, and use a hand-guided rotary tiller, if possible, or a disc harrow pulled by a very light tractor.

Cost

Infiltration basins are relatively cost-effective practices because little infrastructure is needed when constructing them. One study estimated the total construction cost at about $2 per ft (adjusted for inflation) of storage for a 0.25-acre basin (SWRPC, 1991). As with other BMPs, these published cost estimates may deviate greatly from what might be incurred at a specific site. For instance, Caltrans spent about $18/ft³ for the two infiltration basins constructed in southern California, each of which had a water quality volume of about 0.34 ac-ft. Much of the higher cost can be attributed to changes in the storm drain system necessary to route the runoff to the basin locations.

Infiltration basins typically consume about 2 to 3% of the site draining to them, which is relatively small. Additional space may be required for buffer, landscaping, access road, and fencing. Maintenance costs are estimated at 5 to 10% of construction costs.

One cost concern associated with infiltration practices is the maintenance burden and longevity. If improperly maintained, infiltration basins have a high failure rate. Thus, it may be necessary to replace the basin with a different technology after a relatively short period of time.
References and Sources of Additional Information

Information Resources

FLEXSTORM® PURE
PERMANENT INLET PROTECTION

SPECIFY WITH CONFIDENCE
State DOTs and Municipalities across the country now have a universal structural BMP to address the issue of storm sewer inlet protection: FLEXSTORM PURE Inlet Filters.

The FLEXSTORM PURE system is the preferred choice for permanent inlet protection and storm water runoff control. Constructed of versatile stainless steel, FLEXSTORM PURE Inlet Filters will fit any drainage structure and are available with site-specific filter bags providing various levels of filtration. Whether you’re the specifier or the user, it’s clear to see how FLEXSTORM PURE Inlet Filters outperform the competition.

APPLICATIONS:
- Car Washes
- Gas Stations
- Commercial
- Parking Lots
- Loading Ramps
- Dock Drains
- Industrial
- Maintenance

FEATURES:
- Stainless Steel filter framing is custom configured to fit perfectly into any drainage structure, whether a standard design or obstructed inlet opening
- Filtered Flow Rates and Ultimate Bypass Rates are designed to meet your specific inlet requirements
- Multiple Filter Bags are available targeting site specific removal of trash, litter, leaves, or small particles, oil and grease
- Filters work below grade with an ultimate bypass allowing inlet area to drain with a full bag
- Units install in seconds and are easily maintained with the FLEXSTORM Universal Removal Tool (no heavy machinery required)

BENEFITS:
- Receive payback on your investment: durable stainless steel framing provides extended service life while replaceable filter bags handle loads with a safety factor of 5
- Meet stringent removal requirements:
 - FX filter bags are rated for > 80% removal efficiency of street sweep-size particles
 - PC/PC+ filter bags have been tested to 99% TSS removal of OK-110 US Silica Sand and 97% TPH (total petroleum hydrocarbon) removal
- Help prevent fines: FLEXSTORM Inlet Filters comply with EPA NPDES initiatives as a temporary or permanent BMP
- Available through 5,000 ADS distributors nationwide
- If not in stock, orders up to 100 pcs can ship within 48 hours

ADS Service: ADS representatives are committed to providing you with the answers to all your questions, including selecting the proper filter, specifications, installation and more. Also try the ADS FLEXSTORM Online Product Configurator at www.inletfilters.com

The Most Advanced Name in Drainage Systems®
FLEXSTORM PURE INLET FILTERS SPECIFICATION

IDENTIFICATION
The installer shall inspect the plans and/or worksite to determine the quantity of each drainage structure casting type. The foundry casting number, exact grate size and clear opening size, or other information will be necessary to finalize the FLEXSTORM part number and dimensions. The units are shipped to the field configured precisely to fit the identified drainage structure.

MATERIAL AND PERFORMANCE
The FLEXSTORM Inlet Filter system is comprised of a corrosion resistant steel frame and a replaceable geotextile filter bag attached to the frame with a stainless steel locking band. The filter bag hangs suspended at a distance below the grate that shall allow full water flow into the drainage structure if the bag is completely filled with sediment. The standard Woven Polypropylene FX filter bags are rated for 200 gpm/sqft with a removal efficiency of 82% when filtering a USDA Sandy Loam sediment load. The Post Construction PC filter bags are rated for 137 gpm/sqft and have been 3rd party tested at 99% TSS removal to 110 micron and 97% TPH removal of used motor oil hydrocarbon mix.

INSTALLATION
Remove the grate from the casting or concrete drainage structure. Clean the ledge (lip) of the casting frame or drain- age structure to ensure it is free of stone and dirt. Drop in the FLEXSTORM Inlet Filter through the clear opening and be sure the suspension hangers rest firmly on the inside ledge (lip) of the casting. Replace the grate and confirm it is elevated no more than 1/8”, which is the thickness of the steel hangers. For wall mount units, follow instructions for attaching the stainless steel mounting brackets using the provided concrete fasteners.

INSPECTION FREQUENCY
Construction site inspection should occur following each 1/2” or more rain event. Post Construction inspections should occur three times per year (every four months) in areas with mild year round rainfall and four times per year (every three months Feb-Nov) in areas with summer rains before and after the winter snowfall season. Industrial application site inspections (loading ramps, wash racks, maintenance facilities) should occur on a regularly scheduled basis no less than three times per year.

MAINTENANCE GUIDELINES
Empty the filter bag if more than half filled with sediment and debris, or as directed by the Engineer. Remove the grate, engage the lifting bars or handles with the FLEXSTORM Removal Tool, and lift from the drainage structure. Dispose of the sediment or debris as directed by the Engineer or Maintenance Contract in accordance with EPA guidelines.

As an alternative, an industrial vacuum may be used to collect the accumulated sediment. Remove any caked on silt from the sediment bag and reverse flush the bag with medium spray for optimal filtration. Replace the bag if torn or punctured to 1/2” diameter or greater on the lower half of the bag. Post Construction PC(PC+) Bags should be maintained prior to 50% oil saturation. The average 2’ x 2’ PC filter bag will retain approx. 96 oz (5.4 lbs) of oil at which time it should be serviced or replaced. It can be centrifuged or passed through a wringer to recover the oils, and the fabric reused with 85% to 90% efficacy. It may also be recycled for its fuel value through waste to energy incineration. When utilizing the MyCelx Skimmer Pouches in the + bags, note that the skimmers start yellow in color and will gradually turn brown as they become saturated, indicating time for replacement. Each MyCelx skimmer pouch will absorb approximately 89 oz (5 lbs) of oil before requiring replacement. It may also be recycled for its fuel value through waste to energy incineration. Dispose of all oil contaminated products in accordance with EPA guidelines.

FILTER BAG REPLACEMENT
Remove the bag by loosening or cutting off the clamping band. Take the new filter bag, which is equipped with a stainless steel worm drive clamping band, and use a screw driver to tighten the bag around the frame channel. Ensure the bag is secure and that there is no slack around the perimeter of the band.

For more information on FLEXSTORM Inlet Filters and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

ADS “Terms and Conditions of Sale” are available on the ADS website, www.ads-pipe.com
The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc.
FLEXSTORM is a registered trademark of Inlet & Pipe Protection, Inc.
© 2013 Advanced Drainage Systems, Inc. (AD370413) BM0 10892 08/13

The Most Advanced Name in Drainage Systems®
STORMEXX® CLEAN CATCH BASIN FILTER

FlexStorm has partnered with Filtrexx to offer the latest in compost filter technology. The StormExx Clean Catch Basin Filter utilizes an enhanced cartridge filter for the capture and removal of sediment, hydrocarbons, heavy metals, nutrients and bacteria from stormwater runoff. The filter insert sits below the grate and will fit any round or rectangular storm drain using FlexStorm engineered framing systems.

FEATURES & BENEFITS:
- Easy to install, maintain and replace
- Treats stormwater at the street/inlet level
- Patented multi-stage filtration system
- Option for double units
- Overflow bypass of 500+ gpm

REMOVAL RATES:
- TSS: 90%
- Total Phosphorous: 59%
- Soluble Phosphorous: 94%
- Ammonium Nitrate: 41%
- Chromium: 24%
- E. Coli: 93%
- pH (low) neutralized to 6.62
- Oil/Hydrocarbons: 99%
- Copper: 75%
- Zinc: 58%
- Cadmium: 99%
- Arsenic: 18%
- Total Coliform: 79%
- pH (high) neutralized to 8.31
- Turbidity: 76%
- Nickel: 58%
- TKN: 22%
- Load: 60%
- Selenium: 25%
- Fecal Coliform: 71%

Values are total efficiency removal percentage of typical standard input stormwater concentrations over 10 run-off events. All pollutants are common stormwater pollutants and part of industrial and municipal stormwater permit effluent limit guideline regulations. For methodology, reference Filtrexx TechLink Research Summary #3338.
STORMEXX CLEAN CATCH BASIN FILTER

SUMMARY
StormExx inserts are for use at stormwater catch basins in roadways, parking lots and paved areas as indicated on the plans and specifications. The inserts remove sediment, hydrocarbons, heavy metals, nutrients and bacteria from stormwater run-off. Installer must provide size and type as required upon placing order. Inserts shall include all components required for a complete installation at each catch basin as indicated on drawings. Each insert shall include a stainless steel framing system and a replaceable filter/absorber cartridge with filter media having a combined total volume of approximately 1,200 cubic inches.

CATCH BASIN INSERT FEATURES AND CHARACTERISTICS

1. Filter Cartridge Size: Nominal 10” in diameter by 18” high with center perforated HDPE tube. Stormwater flows through media horizontally on a downward path through the filter/absorber cartridge before exiting the perforated tube. The cartridge shall slip over a perforated internal drain tube that exits through the bottom of the housing. The cartridge shall contain approximately 1,200 cubic inches of various absorbent material arranged primarily in layers. The outer surface of the cartridge shall be covered with a poly strainer fabric. Cartridge shall be easily removable for replacement. Drain tube with perforations may extend above filter/absorber portion to allow a minimum flow rate to deter standing water if unit becomes plugged or blinded.
2. Nominal Flow Rate: 15-40 gpm through clean filter/absorber cartridge. Unit features a large overflow opening area and space between housing, deflector and catch basin that allows for high overflow rates with minimum restriction during storm conditions. Overflow capable of passing several hundred gpm.
3. Nominal Flow Rate with Pre-Strainer: Where leaves and other surface material are anticipated, a pre-strainer can be used. Flow restriction can occur when pre-strainer is restricted or plugged.
4. Filter Housing: HDPE solid housing suitable for full height sediment containment and shall be nominal 15 gallons retention size. Smaller size capacity may be used on shallow catch basins. A perforated tube shall be incorporated within the housing to allow the filter/absorber cartridge to slip on for easy replacement. A locking screw-on-cap keeps cartridge in place during use. Use modified or shorter housing (with less storage, flow and filtration) where depth of catch basin is shallow or to suit basin.
5. Frame/Deflector: Each insert shall be fitted with a custom frame that directs incoming water from the grate inlet to the housing. Materials include HDPE or poly sheet and/or Type 304 SS sheet and frame.

OPERATION AND MAINTENANCE GUIDELINES
StormExx catch basin inserts are used to intercept stormwater as it passes through the grate. Heavy sediment items settle to the bottom of the housing and the collected water starts to rise and pass through the filter cartridge. As the rainfall rate increases, the water level may rise to the top of the cartridge. During high rainfall flow events excess untreated water will overflow the housing. Note: The most concentrated contaminants in stormwater generally occur at the beginning of each rain event. Stormwater treatment devices are frequently sized to treat this “first flush” event. Each site and installation may vary widely as to exposure to sediment, construction debris, landscaping and other pollutants.

With periodic site inspections, the proper care and maintenance frequency may be determined for a proper service schedule. The StormExx inserts should be inspected during each season before and after rain events to ensure that the insert filter assembly is ready to accept and treat stormwater run-off. Keep the grate and area within 6’ of the grate clean and free of leaves, grass clippings, sediment and debris to minimize these contaminants from entering the unit housing. This is especially important during leaf fall season as decaying leaves on the filter cartridge can shorten filter life. Periodic visual inspections involve looking through the grate to see if any standing water exists. The collected water should drain through the filter cartridge that is designed for deep bed loading. As it becomes blinded or plugged with sediment, the flow rate capability will be reduced. Replace filter cartridge if standing water is in the housing. Maintenance schedules will vary with rainfall and pollutant concentration levels. Typical post-construction installations will require cartridge change-outs once or twice per year. If sediment reaches a height of 6’ to 8” above bottom of the 24” housing, the sediment should be dumped and the filter cartridge inspected and replaced if necessary. Collected leaves, grass clippings, sediment, debris and spent filter cartridges that are not considered hazardous may be disposed of in on-site trash bins if approved by client. Cartridge disposal shall be in accordance with applicable rules and regulations.
10 Ways to Save Water Outdoors

Family of Southern California Water Agencies

bewaterwise.com
TIP #1 The average homeowner uses twice the amount of water needed to keep plants healthy. Use the watering calculator and index at bewaterwise.com to know exactly how much water your plants need.

TIP #2 Check your sprinkler system for leaks, overspray and broken sprinkler heads. Update with drip or other more water-efficient sprinklers where appropriate.

TIP #3 This fall, plant a portion of your garden with beautiful native and California Friendly plants. Browse the plant database at bewaterwise.com to find just the right look for your outdoor spaces.

TIP #4 Reduce the amount of water-thirsty grass. Keep only what you need and replace the rest with less-thirsty plants or permeable paving.

TIP #5 For the grass you keep, set your lawnmower blade higher.

TIP #6 Adjust your sprinkler timer downward in September. Plants need less water when days are shorter.

TIP #7 Use a broom instead of the hose for cleaning sidewalks and patios.

TIP #8 Mulch! A layer of bark, gravel, compost, sawdust or low-growing groundcover evens out soil temperature and allows better water retention.

TIP #9 Check the list of invasive plants that hurt our environment at caleppc.org and remove any from your garden.

TIP #10 Share these tips with your gardener, neighbors and friends. Water conservation should be a part of every Southern Californian’s lifestyle, but that doesn’t mean we can’t have lush and beautiful outdoor spaces.
What is stormwater runoff?

Stormwater runoff occurs when precipitation from rain or snowmelt flows over the ground. Impervious surfaces like driveways, sidewalks, and streets prevent stormwater from naturally soaking into the ground.

Why is stormwater runoff a problem?

Stormwater can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, wetland, or coastal water. Anything that enters a storm sewer system is discharged untreated into the waterbodies we use for swimming, fishing, and providing drinking water.

The effects of pollution

Polluted stormwater runoff can have many adverse effects on plants, fish, animals, and people:

- Sediment can cloud the water and make it difficult or impossible for aquatic plants to grow. Sediment also can destroy aquatic habitats.
- Excess nutrients can cause algae blooms. When algae die, they sink to the bottom and decompose in a process that removes oxygen from the water. Fish and other aquatic organisms can’t exist in water with low dissolved oxygen levels.
- Bacteria and other pathogens can wash into swimming areas and create health hazards, often making beach closures necessary.
- Debris—plastic bags, six-pack rings, bottles, and cigarette butts—washed into waterbodies can choke, suffocate, or disable aquatic life like ducks, fish, turtles, and birds.
- Household hazardous wastes like insecticides, pesticides, paint, solvents, used motor oil, and other auto fluids can poison aquatic life. Land animals and people can become sick or die from eating diseased fish and shellfish or ingesting polluted water.
- Polluted stormwater often affects drinking water sources. This, in turn, can affect human health and increase drinking water treatment costs.
Stormwater Pollution Solutions

Residential

Lawn care
Excess fertilizers and pesticides applied to lawns and gardens wash off and pollute streams. In addition, yard clippings and leaves can wash into storm drains and contribute nutrients and organic matter to streams.

- Don’t overwater your lawn. Consider using a soaker hose instead of a sprinkler.
- Use pesticides and fertilizers sparingly. When use is necessary, use these chemicals in the recommended amounts. Use organic mulch or safer pest control methods whenever possible.
- Compost or mulch yard waste. Don’t leave it in the street or sweep it into storm drains or streams.
- Cover piles of dirt or mulch being used in landscaping projects.

Septic systems
Leaking and poorly maintained septic systems release nutrients and pathogens (bacteria and viruses) that can be picked up by stormwater and discharged into nearby waterbodies. Pathogens can cause public health problems and environmental concerns.

- Inspect your system every 3 years and pump your tank as necessary (every 3 to 5 years).
- Don’t dispose of household hazardous waste in sinks or toilets.

Pet waste
Pet waste can be a major source of bacteria and excess nutrients in local waters.

- When walking your pet, remember to pick up the waste and dispose of it properly. Flushing pet waste is the best disposal method. Leaving pet waste on the ground increases public health risks by allowing harmful bacteria and nutrients to wash into the storm drain and eventually into local waterbodies.

Auto care
Washing your car and decreeasing auto parts at home can send detergents and other contaminants through the storm sewer system. Dumping automotive fluids into storm drains has the same result as dumping the materials directly into a waterbody.

- Use a commercial car wash that treats or recycles its wastewater, or wash your car on your yard so the water infiltrates into the ground.
- Repair leaks and dispose of used auto fluids and batteries at designated drop-off or recycling locations.

Erosion controls that aren’t maintained can cause excessive amounts of sediment and debris to be carried into the stormwater system. Construction vehicles can leak fuel, oil, and other harmful fluids that can be picked up by stormwater and deposited into local waterbodies.

- Divert stormwater away from disturbed or exposed areas of the construction site.
- Install silt fences, vehicle mud removal areas, vegetative cover, and other sediment and erosion controls and properly maintain them, especially after rainstorms.
- Prevent soil erosion by minimizing disturbed areas during construction projects, and seed and mulch bare areas as soon as possible.

Residential landscaping
Permeable Pavement—Traditional concrete and asphalt don’t allow water to soak into the ground. Instead these surfaces rely on storm drains to divert unwanted water. Permeable pavement systems allow rain and snowmelt to soak through, decreasing stormwater runoff.

Rain Gardens and Grassy Swales—Specially designed areas planted with native plants can provide natural places for rainwater to collect and soak into the ground. Rain from rooftop areas or paved areas can be directed into these areas rather than into storm drains.

Vegetated Filter Strips—Filter strips are areas of native grass or plants created along roadways or streams. They trap the pollutants stormwater picks up as it flows across driveways and streets.

Commercial

Dirt, oil, and debris that collect in parking lots and paved areas can be washed into the storm sewer system and eventually enter local waterbodies.

- Sweep up litter and debris from sidewalks, driveways and parking lots, especially around storm drains.
- Cover grease storage and dumpsters and keep them clean to avoid leaks.
- Report any chemical spill to the local hazardous waste cleanup team. They’ll know the best way to keep spills from harming the environment.

Agriculture

Lack of vegetation on streambanks can lead to erosion. Overgrazed pastures can also contribute excessive amounts of sediment to local waterbodies. Excess fertilizers and pesticides can poison aquatic animals and lead to destructive algae blooms. Livestock in streams can contaminate waterways with bacteria, making them unsafe for human contact.

- Keep livestock away from streambanks and provide them a water source away from waterbodies.
- Store and apply manure away from waterbodies and in accordance with a nutrient management plan.
- Vegetate riparian areas along waterways.
- Rotate animal grazing to prevent soil erosion in fields.
- Apply fertilizers and pesticides according to label instructions to save money and minimize pollution.

Forestry

Improperly managed logging operations can result in erosion and sedimentation.

- Conduct preharvest planning to prevent erosion and lower costs.
- Use logging methods and equipment that minimize soil disturbance.
- Plan and design skid trails, yard areas, and truck access roads to minimize stream crossings and avoid disturbing the forest floor.
- Construct stream crossings so that they minimize erosion and physical changes to streams.
- Expedite revegetation of cleared areas.

Automotive facilities

Uncovered fueling stations allow spills to be washed into storm drains. Cars waiting to be repaired can leak fuel, oil, and other harmful fluids that can be picked up by stormwater.

- Clean up spills immediately and properly dispose of cleanup materials.
- Provide cover over fueling stations and design or retrofit facilities for spill containment.
- Properly maintain fleet vehicles to prevent oil, gas, and other discharges from being washed into local waterbodies.
- Install and maintain oil/water separators.

Facilities

Education is essential to changing people’s behaviors. Signs and warnings near storm drains warn residents that pollutants entering the drains will be conveyed untreated into a local waterbody.
Riverside County has two drainage systems - sanitary sewers and storm drains. The storm drain system is designed to help prevent flooding by carrying excess rainwater away from streets. Since the storm drain system does not provide for water treatment, it also serves the unintended function of transporting pollutants directly to our waterways.

Rain and water runoff from automotive shops and businesses can carry pollutant material into storm drains. Examples of pollutants include oil and grease from cars, copper and asbestos from worn brake linings, zinc from tires, and toxics from spilled fluids.

Since preventing pollution is much easier, and less costly, than cleaning up “after the fact,” the Cities and County of Riverside have adopted ordinances for stormwater management and discharge control. In accordance with state and federal law, these local stormwater ordinances prohibit the discharge of wastes into the storm drain system or local surface waters. This includes discharges containing oil, antifreeze, gasoline, and other waste materials.

PLEASE NOTE: A common stormwater pollution problem associated with automotive shops and businesses is the hosing down of service bays, parking and other areas. Often, this activity flushes pollutants into the storm drain system. The discharges of pollutants is strictly prohibited by local ordinances and state and federal regulations.
Keep your shop in tune. Follow these Practices to help prevent stormwater pollution . . .

1. Changing Automotive Fluids
 - Designate an area away from storm or sanitary drains to change automotive fluids.
 - Collect, separate, and recycle motor oil, antifreeze, transmission fluid, and gear oil.
 - Drain brake fluid and other non-recyclables into a proper container and handle as a hazardous waste.
 - Use a radiator flushing fluid that can be recycled, and add it to the waste antifreeze.

2. Working on Transmissions, Engines, and Miscellaneous Repairs
 - Keep a drip pan or a wide low-rimmed container under vehicles to catch fluids whenever you unclip hoses, unscrew filters, or change parts, to contain unexpected leaks.

3. Preventing Leaks and Spills
 - Avoid spills by emptying and wiping drip pans when you move them to another vehicle or when they are half-full.
 - Routinely check equipment to wipe up spills and repair leaks.
 - Place large pans or an inflatable portable berm under wrecked cars.
 - Drain all fluids from wrecked vehicles or "parts" cars you keep on site.

4. Cleaning up Spills
 - Clean up small spills immediately using shop rags.
 - Keep dry absorbent materials and/or a wet/dry vacuum cleaner on hand for mid-sized spills.
 - Contain large spills immediately; block or shut off floor and parking lot drains and notify the authorities.
 - Train employees to be familiar with hazardous spill response plans and emergency procedures.

5. Identify and Control Wastewater Discharges
 - Ensure that shop sinks and floor drains are connected to the sanitary sewer. Check with the local sewer authority regarding permitting or other requirements.
 - Post signs to prevent disposal of liquid wastes into sanitary drains.

6. Fueling Vehicles
 - Clean-up minor spills, with a dry absorbent, rather than allowing them to evaporate.
 - Dispose of the absorbent as a dry hazardous waste.
 - Use a damp cloth and a damp mop to keep the area clean rather than a hose or a wet mop.

7. Removing and Storing Batteries
 - Store batteries indoors, on an open rack.
 - Return used batteries to a battery vendor.
 - Contain cracked batteries to prevent hazardous spills.

8. Cleaning Parts
 - Clean parts in a self-contained unit, solvent sink, or parts washer to prevent solvents and grease from entering a sewer or storm drain connection.

9. Metal Grinding and Finishing
 - Catch metal filings in an enclosed unit or on a tarpaulin.
 - Sweep filling area to prevent washing metals into floor drains.

10. Storing and Disposing of Waste
 - Store recyclable and non-recyclable waste separately.
 - Place liquid waste (hazardous or otherwise) within a bermed or secondary containment area.
 - Cover outdoor storage areas to prevent contact with rainwater.
 - Collect used parts for delivery to a scrap metal dealer.

11. Selecting and Controlling Inventory
 - Purchase recyclable or non-toxic materials.
 - Select "closed-loop" suppliers and purchase supplies in bulk.

12. Outdoor Parking and Auto Maintenance
 - Treat outdoor areas as an extension of your service bays or avoid using altogether.
 - Sweep-up trash and dirt from outdoor parking and maintenance areas. Do not hose down areas. All non-storm water discharges are prohibited.
 - Drain work areas to a sanitary drain rather than a storm drain. Contact the local sewer authority to determine if pretreatment is required.

13. Washing Vehicles, Cleaning Engines, and Other Steam Cleaning
 - For occasional car exterior cleaning, minimize the water used and divert runoff to landscaped areas, keeping it out of the storm drain.
 - Wash vehicles with biodegradable, phosphate-free detergent.
 - Make sure no wastewater from engine or parts cleaning or steam cleaning is discharged where it may flow to a street, gutter, or storm drain.

14. Cleaning Work Areas
 - Sweep or vacuum the shop floor frequently.
 - Damp mop work areas - do not hose down work areas into the street or gutter.
 - Do not pour mop water into the parking lot, street, gutter or storm drain.
 - Use non-toxic cleaning products whenever possible.

Please remember:

"ONLY RAIN IN THE DRAIN"
"NO DUMPING"
Stormwater and the Construction Industry

Maintain your BMPs!
IN RIVERSIDE COUNTY....Call 1-800-506-2555
TO REPORT ILLEGAL STORMDRAIN DISPOSAL

E-mail: Flood.fcpndes@co.riverside.ca.us
Visit our website: www.floodcontrol.co.riverside.ca.us

Brought to you by the Storm Water/Clean Water Pollution Protection Program.....
REMEMBER, ONLY RAIN IN THE STORMDRAIN!

www.epa.gov/npdes/menuofbmps
Developing and Implementing a Plan

You must have a plan that includes erosion and sediment control and pollution prevention (EMP). Three Plan require:

1. Advance planning and strategic project implementation of the BMPs.
2. Choose and select construction control measures to limit erosion of sediment and control pollution risk.
3. Regularly monitor and adjust activities to ensure that BMPs remain effective and pollution is at a level acceptable to the local authorities.

Finally, the plan must be updated to include in your EMP Plan all the required monitoring activities at every construction site.

Erosion and sediment control practices are only as good as their installation, maintenance, and monitoring.

5. Implementing and Maintaining a Plan

Implement controls

Inspect and maintain controls

Report releases of unknown materials

The EMP describes the practices and activities you are to perform during construction and is required to be submitted to the contractor.

6. Completing the Project: Finalization and Termination of the Plan

Finalization

Notice of Termination

Record retention

The contractor should ensure that the plan is retained for a period of at least one year following the project's completion or the date the contractor ceases operations on the property.

The contractor should ensure that the plan is retained for a period of at least one year following the project's completion or the date the contractor ceases operations on the property.

5. Implementing and Maintaining a Plan

Implement controls

Inspect and maintain controls

Report releases of unknown materials

The EMP describes the practices and activities you are to perform during construction and is required to be submitted to the contractor.

6. Completing the Project: Finalization and Termination of the Plan

Finalization

Notice of Termination

Record retention

The contractor should ensure that the plan is retained for a period of at least one year following the project's completion or the date the contractor ceases operations on the property.

The contractor should ensure that the plan is retained for a period of at least one year following the project's completion or the date the contractor ceases operations on the property.

Visit www.epa.gov/hpdx/stormwater for more information.
What's the Scoop?

TIPS FOR A HEALTHY PET AND A HEALTHIER ENVIRONMENT

CREATE A HEALTHY ENVIRONMENT in and around your home by following these simple pet practices. Your pet, family and neighbors will appreciate their clean comfortable surroundings.

HOUSEHOLD PETS

We all love our pets, but pet waste is a subject everyone likes to avoid. Pet waste left on trails, sidewalks, streets and grassy areas can be washed into the nearest waterway when it rains. Even if you can't see streams or lakes near you, rainfall (stormwater) or sprinkler runoff can wash pet waste into the storm drains that carry runoff to the nearest streams or lakes untreated.

The risk of stormwater contamination increases if pet waste is allowed to accumulate in outdoor animal pen areas or left on sidewalks, streets or driveways.

Pet waste contains nutrients and bacteria. Nutrients can promote the growth of algae in streams and lakes. Algae can cause fish kills and other environmental damage if it is fed too many nutrients. Pet Waste also contains e. Coli and fecal bacteria, which can cause disease in other animals and humans that come in contact with it when swimming or splashing in streams and lakes. Dogs also carry salmonella and giardia, which can make people sick.

Pet waste that is not picked up and properly disposed can also increase vector problems. Flies and other insects are not only attracted to and feed on pet waste, but can also be infected with diseases and spread those diseases to humans and other animals.

WHAT CAN YOU DO?

- SCOOP up pet waste and flush it down the toilet or place in trash can.
- NEVER DUMP pet waste into a storm drain or catch basin.
- USE the complimentary bags or mutt mitts offered in dispensers at local parks.
- CARRY EXTRA BAGS when walking your dog and make them available to other pet owners who are without.
- TEACH CHILDREN how to properly clean up after a pet.
- TELL FRIENDS AND NEIGHBORS about the ill effects of animal waste on the environment. Encourage them to clean up after pets.

Call 1-800-506-2555 TOLL FREE to report illegal dumping to the storm drain, find the dates and times of local Household Hazardous Waste Collection Events, obtain additional information on stormwater problems and solutions, request presentations about stormwater pollution in your child's classroom, or learn about free grasscycling and composting workshops.

For more information, visit www.riversidecounty.ca.gov/environmental/solidwaste/ or call the Riverside County Animal Services Location at 760-343-3644.

RIVERSIDE COUNTY ANIMAL SERVICES LOCATIONS:

www.rcdas.org

BLYTHE
16490 West Hobson Way
Blythe, CA 92225
760-991-7667

COACHELLA VALLEY ANIMAL CAMPUS
72-050 Petland Place
Thousand Palms, CA 92276
760-343-3644

RIVERSIDE COUNTY ANIMAL SERVICES
6851 Van Buren Blvd.
Riverside, CA 92509
951-685-4340

OTHER ANIMAL SHELTERS:

ANIMAL CARE CENTER OF INDIo
45-395 Van Buren
Indio, CA 92260
760-391-4135

ANIMAL FRIENDS OF THE VALLEYS
29001 Bastron Avenue
Lake Elsinore, CA 92530
951-654-9616
(Serving incorporated Temecula, Wildomar, Lake Elsinore, Murrieta and Canyon Lake)

MARY S. ROBERTS PET ADOPTION CENTER
6155 Industrial Avenue
Riverside, CA 92504
951-685-4340

RAMONA HUMANE SOCIETY
650 Humane Way
San Jacinto 92586
951-655-5000
(Serving Sun City, Menifee, Hemetland and Homeland)

Looking to adopt a pet? This website is linked to many animal shelters. www.petfinder.com

To report illegal storm drain disposal, call 1-800-506-2555

Or visit our website at www.rcfood.org

E-mail fowpdees@rcfood.org
SCOOP THE POOP

Many communities have "Scoop the Poop" laws that govern pet waste cleanup. Some of these laws specifically require anyone who walks an animal off their property to carry a bag, shovel, or scooper. Any waste left by the animal must be cleaned up immediately. CALL YOUR LOCAL CODE ENFORCEMENT OFFICE to find out more about pet waste regulations.

OTHER WAYS TO PROTECT YOUR PETS AND THE ENVIRONMENT

Pets are only one of many sources that contribute to water pollution. However, these other sources of water pollution cannot only harm the environment but also harm your pet. Improperly used or stored lawn fertilizers, pesticides, soap, grease and vehicle fluids cannot only be washed into local streams and lakes, these chemicals can also harm your pet if they ingest or touch these chemicals. Call 1-800-506-2555 for information regarding how to properly dispose of household hazardous wastes such as these. You can also keep your pets and your environment healthy by properly maintaining your vehicles, and limiting use of pesticides and fertilizers to only the amount that is absolutely needed.

Make sure to not only protect your pets, but to also protect your neighbors pets. NEVER HOSE VEHICLE FLUIDS into the street or gutter. USE ABSORBENT MATERIALS such as cat litter to clean-up spills. SWEEP UP used absorbent materials and place it in the trash.

HORSES AND LIVESTOCK

Fortunate enough to own a horse or livestock? You, too, can play a part in protecting and cleaning up our water resources. The following are a few simple Best Management Practices (BMPs) specifically designed for horses and livestock.

- STORE your manure properly. Do not store unprotected piles of manure in places where stormwater runoff may wash the manure away. Place a cover or tarp over the pile to keep rainwater out.

- BUILD a manure storage facility to protect your pets property and the environment. These structures usually consist of a concrete pad to protect groundwater and a short wall on one or two sides to make manure handling easier.

- READ the Only Rain Down the Storm Drain brochure titled "Tips for Horse Care" for additional guidance and recommendations. This brochure should be available from your local city office or for download at www.rcflood.org/stormwater.

- KEEP animals out of streams - Horses and livestock can deplete in streams causing stormwater pollution. Livestock and horses in streams can also disturb sensitive habitat and vegetation, causing additional environmental damage. Keep livestock and horses away from streams and use designated stream crossings whenever possible.

- MATERIAL STORAGE SAFETY TIPS

Many of the chemicals found in barns require careful handling and proper disposal. When using these chemicals, be certain to follow these common sense guidelines:

- Buy only what you need.
- Treat spills of hoof oils like a fuel spill. Use kitty litter to soak up the oil and dispose of it in a tightly sealed plastic bag.
- Store pesticides in a locked, dry, well-ventilated area.
- Protect stored fertilizer and pesticides from rain and surface water.

RESOURCE CONSERVATION DISTRICTS CAN HELP

Call 1-800-506-2555 for assistance with locating a local conservation district that can help you properly manage your manure, re-establish healthy pastures, control weeds, or identify appropriate grasses for your soils.

Thank you for doing your part to protect your watershed, the environment, your pets and your community!
Riverside County has two drainage systems - sanitary sewers and storm drains. The storm drain system is designed to help prevent flooding by carrying excess rainwater away from streets. Since the storm drain system does not provide for water treatment, it also serves the function of transporting pollutants directly to our waterways.

Waste or washwater generated by the food service industry often contains materials such as food wastes, oil, grease, detergents, and degreasers. These materials can degrade local waters when allowed to flow into a storm drain system.

Since preventing pollution is much easier, and less costly, than cleaning up “after the fact,” the Cities and County of Riverside have adopted ordinances for stormwater management and discharge control. In accordance with state and federal law, these local stormwater ordinances prohibit the discharge of wastes into the storm drain system or local surface waters. This includes discharges from the food service industry containing food wastes, oil, grease, detergents, and degreasers.

Stormwater pollution causes as much as 60% of our water pollution problem. It jeopardizes the quality of our waterways and poses a threat to groundwater resources if pollutants percolate through soil.

PLEASE NOTE: A common stormwater pollution problem associated with the food service industry is the discharge of washwater into alleys and gutters, and the hosing down of outdoor areas. Often, these activities flush pollutants into the storm drain system. The discharges of pollutants is strictly prohibited by local ordinances and state and federal regulations.
A Menu of Activities . . . to Keep Our Water Clean

Cleanin’ It Right . . .
Pour mop and wash water into the mop sink or down floor drains . . . not into gutters, alleys, parking lots or a storm drain. Wash greasy equipment only in designated wash areas which are properly connected to the sewer system with an appropriate oil/water separator. Also, avoid washing kitchen mats, garbage containers, and other items in areas where wastewater is likely to flow into a storm drain.

Outdoor/Sidewalk Areas . . .
Sweep up food particles, cigarette butts, and trash from outdoor dining areas before rinsing or steam cleaning. Don’t use toxic bleaches or detergents when you pressure wash outdoor dining areas, entrances or surrounding sidewalk areas.

Proper Storage and Disposal . . .
General cleaners, floor cleaners, solvents, and detergents often contain toxic substances. Read labels carefully and store and dispose of these products properly.

How ‘Bout That Dumpster . . .
Keep dumpster and loading dock areas clean. Control litter by sweeping - don’t hose down the area. Replace leaky dumpsters and keep lids closed to keep out rainwater.

Watch Out For Spills . . .
Use dry methods for spill cleanup. Don’t hose down outside spills. Use rags or absorbents such as cat litter and then dispose of in the garbage, or handle as hazardous waste as appropriate. If necessary, mop the area with a minimum amount of water.

Use Water-Friendly Products . . .
Whenever possible, purchase water-based cleaning products. Look for products labeled “non-toxic,” “non-petroleum based,” “ammonia-free,” “phosphate-free,” and “perfume-free,” or “readily biodegradable.”

Grease and Oil . . .
Handle and dispose of grease properly. Save used cooking grease and oil for recycling in tallow bins or sealed containers. Never pour grease into a sink, floor drain, dumpster or storm drain. Watch out for, and report to management, overflowing grease interceptors. Call (909) 358-5172 for disposal information.

REMEMBER: Don’t throw toxic waste into the trash or into a storm drain. To report toxic spill call 911. For information on hazardous waste pick-up call (909) 358-5055.

How ‘Bout That Dumpster . . .
Keep dumpster and loading dock areas clean. Control litter by sweeping - don’t hose down the area. Replace leaky dumpsters and keep lids closed to keep out rainwater.

Proper Storage and Disposal . . .
General cleaners, floor cleaners, solvents, and detergents often contain toxic substances. Read labels carefully and store and dispose of these products properly.

REMEMBER: Don’t throw toxic waste into the trash or into a storm drain. To report toxic spill call 911. For information on hazardous waste pick-up call (909) 358-5055.

Outdoor/Sidewalk Areas . . .
Sweep up food particles, cigarette butts, and trash from outdoor dining areas before rinsing or steam cleaning. Don’t use toxic bleaches or detergents when you pressure wash outdoor dining areas, entrances or surrounding sidewalk areas.

Proper Storage and Disposal . . .
General cleaners, floor cleaners, solvents, and detergents often contain toxic substances. Read labels carefully and store and dispose of these products properly.

REMEMBER: Don’t throw toxic waste into the trash or into a storm drain. To report toxic spill call 911. For information on hazardous waste pick-up call (909) 358-5055.

Outdoor/Sidewalk Areas . . .
Sweep up food particles, cigarette butts, and trash from outdoor dining areas before rinsing or steam cleaning. Don’t use toxic bleaches or detergents when you pressure wash outdoor dining areas, entrances or surrounding sidewalk areas.

Everyone contributes a little to the problem of stormwater pollution. Now it’s time for all of us to become part of the solution!
Stormwater Pollution... What You Should Know

Riverside County has two drainage systems - sewers and storm drains. The storm drain system was designed to reduce flooding by carrying excess rainwater away from streets and developed areas. Since the storm drain system does not provide for water treatment, it also serves the unintended function of transporting pollutants directly to our local waterways.

Unlike sanitary sewers, storm drains are not connected to a wastewater treatment plant – they flow directly to our local streams, rivers, and lakes.

Stormwater runoff is a part of the natural hydrologic process. However, land development and construction activities can significantly alter natural drainage processes and introduce pollutants into stormwater runoff. Polluted stormwater runoff from construction sites has been identified as a major source of water pollution in California. It jeopardizes the quality of our local waterways and can pose a serious threat to the health of our aquatic ecosystems.

The Cities and County of Riverside StormWater/CleanWater Protection Program

Because preventing pollution is much easier and less costly than cleaning up “after the fact,” the Cities and County of Riverside StormWater/CleanWater Protection Program informs residents and businesses on pollution prevention activities. This pamphlet describes various Best Management Practices (BMPs) that construction site operators can use to prevent stormwater pollution.

In accordance with applicable federal and state law, the Cities and County of Riverside have adopted ordinances for stormwater management and discharge control that prohibit the discharge of pollutants into the storm drain system or local surface water. This includes discharges from construction sites containing sediment, concrete, mortar, paint, solvents, lubricants, vehicle fluids, fuel, pesticides, and construction debris.

PLEASE NOTE: The Federal, State, and local regulations strictly prohibit the discharge of sediment and pollutants into the streets, the storm drain system or waterways. As an owner, operator or supervisor of a construction site, you may be held financially responsible for any environmental damage caused by your subcontractors or employees.

Resources

Stormwater Pollution from Construction Activities

The two most common sources of stormwater pollution problems associated with construction activities are erosion and sedimentation. Failure to maintain adequate erosion and sediment controls at construction sites often results in sediment discharges into the storm drain system, creating multiple problems once it enters local waterways.

Construction vehicles and heavy equipment can also track significant amounts of mud and sediment onto adjacent streets. Additionally, wind may transport construction materials and wastes into streets storm drains, or directly into our local waterways.
The following Best Management Practices (BMPs) can significantly reduce pollutant discharges from your construction site. Compliance with stormwater regulations can be as simple as minimizing stormwater contact with potential pollutants by providing covers and secondary containment for construction materials, designating areas away from storm drain systems for storing equipment and materials and implementing good housekeeping practices at the construction site.

- Clean-up spills immediately using dry clean-up methods (e.g., absorbent materials such as cat litter, sand or rags for liquid spills; sweeping for dry spills such as cement, mortar or fertilizer) and by removing the contaminated soil from spills on dirt areas.
- Prevent erosion by implementing any or a combination of soil stabilization practices such as mulching, surface roughening, permanent or temporary seeding.
- Maintain all vehicles and equipment in good working condition. Inspect frequently for leaks, and repair promptly.
- Practice proper waste disposal. Manage construction materials and wastes, including solvents, water-based paint, vehicle fluids, broken asphalt and concrete, wood, and cleared vegetation can be recycled. Materials that cannot be recycled must be taken to an appropriate landfill or disposed of as hazardous waste.
- Cover open dumpsters with secured tarps or plastic sheeting. Never clean out a dumpster by washing it down on the construction site.
- Arrange for an adequate debris disposal schedule to ensure that dumpsters do not overflow.

There is no expiration date for the Construction Activities General Permit (WQ Order No. 99-08DWQ) on August 19, 1999, superseding the now expired SWRCB statewide General Permit (SWQ Order No. 92-08DWQ). This permit is administered and enforced by the SWRCB and the local Regional Water Quality Control Boards (RWQCB). The updated Construction Activities General Permit establishes a number of new stormwater management requirements for construction site operators.

NOTE: Some construction activities stormwater permits are issued on a regional basis. Consult your local RWQCB to find out if your project requires coverage under any of these permits.

What must I do to comply with the requirements of the Construction Activities General Permit?

1. Implement BMPs for non-stormwater discharges year-round.
2. Prepare and implement a Stormwater Pollution Prevention Plan (SWPPP) prior to commencing construction activities.
3. Keep a copy of the SWPPP at the construction site for the entire duration of the project.
4. Calculate the anticipated stormwater runoff.
5. Implement an effective combination of erosion and sediment control on all soil disturbed areas.
6. Conduct site inspections prior to anticipated storm events, every 24-hours during extended storm events, and after actual storm event.
7. Perform repair and maintenance of BMPs as soon as possible after storm events depending upon worker safety.
8. Update the SWPPP as needed, to manage pollutants or reflect changes in site conditions.
9. Include description of post construction BMPs at the construction site, including parties responsible for long-term maintenance.

How long is this Construction Activities General Permit in effect?

The Permit coverage stays in effect until you submit a Notice of Termination (NOT) to the SWRCB. For the purpose of submitting a NOT, all soil disturbing activities have to be completed and one of the three following criteria has to be met:

1. Change of ownership;
2. A uniform vegetative cover with 70 percent coverage has been established; or,
3. Equivalent stabilization measures such as mulching, surface roughening, etc., have been employed.

What Should You Do?

Advance Planning to Prevent Pollution

- Remove existing vegetation only as needed.
- Schedule excavation, grading, and paving operations for dry weather periods, if possible.
- Designate a specific area of the construction site, well away from storm drain inlets or watercourses, for material storage and equipment maintenance.
- Develop and implement an effective combination of erosion and sediment controls for the construction site.
- Practice source reduction by ordering only the amount of materials that are needed to finish the project.
- Educate your employees and subcontractors about stormwater management requirements and their pollution prevention responsibilities.
- Control the amount of surface runoff at the construction site by impeding internally generated flows and using berms or drainage ditches to direct incoming offsite flows to go around the site. **Note:** Consult local drainage policies for more information.

General Construction Activities Stormwater Permit

(Construction Activities General Permit)

The State Water Resources Control Board (SWRCB) adopted a new Construction Activities General Permit (WQ Order No. 99-08DWQ) on August 19, 1999, superseding the now expired SWRCB statewide General Permit (WQ Order No. 92-08DWQ). This permit is administered and enforced by the SWRCB and the local Regional Water Quality Control Boards (RWQCB). The updated Construction Activities General Permit establishes a number of new stormwater management requirements for construction site operators.

NOTE: Please refer to the Construction Activities General Permit for detailed information. You may contact the SWRCB, your local RWQCB, or visit the SWRCB website at www.swrcb.ca.gov/stormwtr/ to obtain a State Construction Activities Stormwater General Permit packet.

Frequently Asked Questions:

Does my construction site require coverage under the Construction Activities General Permit?

Yes, if construction activity results in the disturbance of five or more acres of total land area or is part of a common plan of development that results in the disturbance of five or more acres.

How do I obtain coverage under the Construction Activities General Permit?

Obtain the permit package and submit the completed Notice of Intent (NOI) form to the SWRCB prior to grading or disturbing soil at the construction site. For ongoing construction activity involving a change of ownership, the new owner must submit a new NOI within 30 days of the date of change of ownership. The completed NOI along with the required fee should be mailed to the SWRCB.

What must I do to comply with the requirements of the Construction Activities General Permit?

- Implement BMPs for non-stormwater discharges year-round.
- Prepare and implement a Stormwater Pollution Prevention Plan (SWPPP) prior to commencing construction activities.
- Keep a copy of the SWPPP at the construction site for the entire duration of the project.
- Calculate the anticipated stormwater runoff.
- Implement an effective combination of erosion and sediment control on all soil disturbed areas.
- Conduct site inspections prior to anticipated storm events, every 24-hours during extended storm events, and after actual storm event.
- Perform repair and maintenance of BMPs as soon as possible after storm events depending upon worker safety.
- Update the SWPPP as needed, to manage pollutants or reflect changes in site conditions.
- Include description of post construction BMPs at the construction site, including parties responsible for long-term maintenance.

How long is this Construction Activities General Permit in effect?

The Permit coverage stays in effect until you submit a Notice of Termination (NOT) to the SWRCB. For the purpose of submitting a NOT, all soil disturbing activities have to be completed and one of the three following criteria has to be met:

1. Change of ownership;
2. A uniform vegetative cover with 70 percent coverage has been established; or,
3. Equivalent stabilization measures such as the use of reinforced channel liners, soil cement, fiber matrices, geotextiles, etc., have been employed.
Landscaping and garden maintenance activities can be major contributors to water pollution. Soils, yard wastes, over-watering and garden chemicals become part of the urban runoff mix that winds its way through streets, gutters and storm drains before entering lakes, rivers, streams, etc. Urban runoff pollution contaminates water and harms aquatic life!

In Riverside County, report illegal discharges into the storm drain, call 1-800-506-2555 "Only Rain Down the Storm Drain"

Important Links:

Riverside County Household Hazardous Waste Collection Information 1-800-304-2226 or www.rivcowm.org

Riverside County Backyard Composting Program 1-800-366-SAVE

Integrated Pest Management (IPM) Solutions www.ipm.ucdavis.edu

California Master Gardener Programs www.mastergardeners.org www.camastergardeners.ucdavis.edu

California Native Plant Society www.cnps.org

The Riverside County “Only Rain Down the Storm Drain” Pollution Prevention Program gratefully acknowledges Orange County’s Storm Water Program for their contribution to this brochure.
Tips for Landscape & Gardening

This brochure will help you to get the most of your lawn and gardening efforts and keep our waterways clean. Clean waterways provide recreation, establish thriving fish habitats, secure safe sanctuaries for wildlife, and add beauty to our communities. NEVER allow gardening products or waste water to enter the street, gutter or storm drain.

General Landscaping Tips

- Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.

- Prevent erosion of slopes by planting fast-growing, dense ground covering plants. These will shield and bind the soil.

- Plant native vegetation to reduce the amount of water, fertilizers and pesticides applied to the landscape.

- Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.

Garden & Lawn Maintenance

- Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or micro-spray systems. Periodically inspect and fix leaks and misdirected sprinklers.

- Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Instead, dispose of green waste by composting, hauling it to a permitted landfill, or recycling it through your city’s program.

- Consider recycling your green waste and adding “nature's own fertilizer” to your lawn or garden.

- Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.

- Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result in the deterioration of containers and packaging.

- Rinse empty pesticide containers and re-use rinse water as you would use the product. Do not dump rinse water down storm drains or sewers. Dispose of empty containers in the trash.

- When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting.

- Try natural long-term common sense solutions first. Integrated Pest Management (IPM) can provide landscaping guidance and solutions, such as:
 - Physical Controls - Try hand picking, barriers, traps or caulking holes to control weeds and pests.
 - Biological Controls - Use predatory insects to control harmful pests.
 - Chemical Controls - Check out www.ipm.ucdavis.edu before using chemicals. Remember, all chemicals should be used cautiously and in moderation.
 - If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.
 - Take unwanted pesticides to a Household Waste Collection Center to be recycled.
 - Dumping toxics into the street, gutter or storm drain is illegal!

www.bewaterwise.com Great water conservation tips and drought tolerant garden designs.

www.ourwaterourworld.com Learn how to safely manage home and garden pests.

Additional information can also be found on the back of this brochure.
Your community preserves habitat for important native plants and animals. By habitat, we mean homes; food, water, and places with space to live. The habitat is managed as part of a **biological conservation easement**, a legal agreement that permanently limits its use.

Many conservation easements include a waterway or wetland because plants and animals need clean, fresh water, the most limited resource in our dry Southern California climate. A waterway (also called watercourse, arroyo, wash) conveys a flowing creek, stream, or river, which provides drinking water for local and migrating wildlife.

Not all of our waterways have visible flowing water year-round. Some creeks and streams continue to flow underground, while others flow for a short time after a storm (ephemeral). The small, and often dry washes are important to wildlife because they provide habitat and their periodic flows drain into larger waterways. It's essential that people do not degrade the quality of any water that reaches local waterways.

Water supports an abundance of vegetation and a variety of life, or **biodiversity**. Streamside vegetation, along dry or flowing waterways, is referred to as **riparian**. **Native** riparian plants provide **native** animals with suitable food, shelter, nesting sites and escape-cover from predators.

The purpose of this publication is to help homeowners become **habitat-friendly** neighbors for nearby habitat lands. The **Resources Directory**, inserted inside this booklet, provides helpful websites and contact information for agencies, organizations, gardens, and native plant nurseries.

Unfortunately, our modern-day lifestyles have negative impacts on the environment around us. Human activity in, or near waterways can damage the capacity of the habitat to support some kinds of plant and animal life, especially species that do not adapt to urban/suburban conditions. Here are some ways to prevent and reduce negative impacts and help restore habitat to healthy conditions.
Reduce Impacts on Native Wildlife

Prevent light, noise, and activity in, and adjacent to wetlands.
- If you wish to observe wildlife, please watch from afar, especially during the breeding and nesting season, from March to September. Most wild animals are naturally fearful of human contact. Human activity near a nest or den may frighten adult animals away from young and jeopardize their survival.
- When visiting natural areas, disturb as little as possible. Avoid walking or riding in a stream course or on channel banks. Heavy foot traffic, horses, and off-road vehicles may cause channel banks to collapse, accelerating erosion and increasing water-born sediment and turbidity.
- Help control entry into habitat areas. Close unessential roadways to prevent access for illegal dumping, trespass, and off-road vehicle use.
- Leave nothing behind.
- Focus necessary lighting downward and inward toward your home, yard, and buildings.
- To report poaching or polluting call CalTIP, Californians Turn In Poachers and Polluters, a confidential secret witness program. The toll free telephone number operates 24 hours a day, 7 days a week. (See the Resources Directory insert for contact information.)

Do not allow pets to roam in habitat land where they will disturb and hunt native wildlife. Keep pets on a leash and droppings out of waterways. Cats and dogs stress or kill wildlife and prevent natural ecosystems from supporting their own predators, such as hawks, coyotes, foxes, and bobcats. Conversely, domesticated animals face hazards in wild areas. Pets may be attacked by predators, such as coyotes and rattlesnakes, or may contract disease, fleas, and ticks.

Do not release unwanted animals into the wild. Abandoned cats, dogs, birds, reptiles and fish can have significant impacts on populations of native species, either through disease, predation or competition for food and space.
Respect and protect wild animals by keeping them wild. In some instances, being a good neighbor means protecting your living area by excluding certain kinds of wildlife, mainly mammals. The human habitat includes home sites, buildings, yards, gardens, and regularly used outdoor areas. Install fencing around the human habitat portion of your property and secure enclosures to protect children, pets, and farm animals.

- Do not take small animals, such as tortoises, tadpoles, frogs, snakes, birds, lizards or eggs from the wild. Never attempt to “adopt” or domesticate a wild animal.

- Discourage dangerous predators from penetrating human habitat areas. Install fencing that will exclude predators. Place sensors that trigger sprinklers and lights to deter predators and mammals from entering areas of human activity.

- Prevent mammals from living in and near your home by closing entries, filling holes, and removing brush, junk, and woodpiles near buildings.

- Don’t feed human food to wildlife. Do not leave pet food outside. Prevent garbage from becoming a food source for wild mammals by sealing trash can lids. If you compost, use closed-containers or turn piles regularly. Compost plant material only; meat scraps should not be mixed in a compost pile.

For more information, contact the California Department of Fish and Game. (See the Resources Directory insert for contact information.)
Reduce Impacts on Native Plants

Remove invasive, non-native plants from home landscaping and adjacent habitat lands, especially those that quickly spread through waterways, displacing important native species.

DO NOT PLANT

Giant reed
Salt Cedar
Tree of Heaven
Red apple, heartleaf iceplant
Fountain grass (yellow)
Castor bean
Periwinkle
Peruvian (Calif.) pepper tree
Brazilian pepper tree
Mexican fan palm
Sweet fennel
Pampas grass/Jubata grass
Common iceplant
Myoporum species

Arundo donax
Tamarix chinensis
Ailanthus altissima
Aptenia cordifolia
Pennisetum setaceum
Ricinus communis
Vinca major
Schinus molle
Schinus terebinthifolius
Washingtonia robusta
Foeniculum vulgare
Cortaderia jubata/selloana
Mesembryanthemum crystallinum

Contact your local Resource Conservation District for help identifying invasive species and for removal of exotic weeds from waterways. Visit the California Invasive Plant Council web site for suggested plants to replace invasives. (See the *Resources Directory* insert for contact information.)

Protect Water Quality

Make sure that the water that flows off your property is clean.

- Prevent trash, debris, and waste of any kind from washing off homesites and streets into gutters, storm drains, and dry washes. These drainage-ways empty into streams that flow to the Santa Ana River, and ultimately, the ocean.
- Evaluate the flow of runoff over your property. Place manure, barnyard bedding, and debris in areas where water does not pool or flow, or reuse the waste as fertilizer or mulch. Check with your local municipality for ordinances concerning the disposal of manure and bedding.
- Use care when applying fertilizers, pesticides, and herbicides on your property. Read labels “before you buy and before you apply” for directions, application rates, and disposal. Apply the correct amount at the proper time, for example, not during plant dormancy.
Dispose of waste in its proper place.

- Read product labels, and dispose of household hazardous wastes (oil based paints, pesticides, antifreeze, motor oil, batteries, fluorescent bulbs, etc.) in prescribed ways and at designated disposal sites or community collection events, not on the ground or in a storm drain inlet. Whenever possible, reduce the use of hazardous materials in and around your home. Call the Only Rain Down the Storm Drain program for disposal dates and locations. (See the Resources Directory insert for contact numbers.) You can also recycle automotive fluids, tires, and batteries at car repair businesses.
- Dispose of trash at sanitary landfills.
- Compost yard and other organic wastes.

Better yet: Reduce, Reuse, Recycle.
Siting Homes Near Waterways
If you are building next to a waterway, leave a buffer between the waterway and your human habitat area of graded pads, structures, and ornamental landscaping. *Wildlife habitat* land includes areas beyond buildings, yards, and defensible space (fire safety zones), generally to be left undisturbed for wildlife. A buffer between the human habitat and a waterway provides space for habitat, flood waters, and for wildlife escape during high water.

The buffer or “setback” distance will vary according to site conditions, however a minimum 100-foot setback from the top edge of a waterway, not from the water itself, is recommended. This allows space for creek/stream meander and high water flows. The banks of creeks and streams “meander”, which means they are constantly “wandering” or relocating. Meander naturally occurs when flows cause erosion of channel banks and deposition of sediment.

As land is converted to urban uses, the volume of flow in waterways increases. Impervious surfaces from streets, roofs, and parking lots increase the amount of runoff, erosion and pollutants that degrade water quality.

Many people are not aware of the vulnerability of natural ecosystems, nor are they aware that it is illegal to grade or alter a waterway without an assessment and permits from resource agencies and municipalities. If you propose an activity that will impact a stream, river, or lake, the California Department of Fish and Game (DFG) requires completion of a Streambed Alteration Agreement. Depending on the activity you are proposing, you may need to obtain a permit, agreement, or other authorization from one or more government agencies. Notify DFG, U.S. Army Corps of Engineers, and the Santa Ana Regional Water Quality Control Board during early planning, prior to beginning a project that will:

- use material from a streambed;
- divert, obstruct, or change the natural flow or the bed, channel, or bank of any river, stream, or lake;
- result in the disposal or deposition of debris, waste, or other natural material where it can pass into any river, stream, or lake.

A Streambed Alteration Agreement is also required for streams that flow intermittently, such as dry washes and waterways with subsurface flow.
It is essential that landowners do not confine, or encroach on waterways. Keep buildings, septic systems, horses, livestock, fencing, agricultural and ornamental plantings out of waterways and away from channel banks.

When building homes in fire-prone areas, avoid ridge tops and canyons. Set buildings back from the edge of steep slopes. Create a minimum distance of 100-feet of defensible space, a managed area around a home, where the amount of fuel (dead plants, dry leaves, wood) has been reduced. Consult with your local fire department or the California Department of Forestry and Fire Protection for fire safety and weed abatement information. (Please see Resources Directory insert).

Habitat-friendly Yards

Landscape with Locals. Not just any California native plant is suitable for landscapes near habitat lands. Local native plants are the safest because they have unique characteristics that have helped them survive in their specific environments. Gardening with local flora helps maintain the genetic integrity of local plants and ecosystems. It helps maintain regional variation in vegetation and wildlife.

Why is regional variation important? If plants from other areas crossbreed with local natives, scientists fear that local populations would lose some of the unique characteristics that are important for success in this region. Their genetic material would no longer be unique and regionally identifiable. Plant interbreeding could reduce biological diversity, biodiversity, in the gene pool. There are important interactions between native plants, microorganisms, and the animals that use them, some of which are critical to the reproduction and survival of native plants and animals.

Create habitat in your yard for urban-adapted wildlife. Even if you live in the heart of a city, consider gardening for urban-adapted wildlife by providing a reliable water source and local native plants that provide food, shelter, and nesting sites. Each small patch of yard provides a stepping-stone of habitat from wildlands across the city. A patchwork of habitat-yards creates an urban ecosystem that more closely mimics our predevelopment, native landscape. When linked together, those patches cumulatively support biodiversity. To host a variety of native birds and butterflies in your yard, select plants that flower and fruit at different times of the year. Prune trees and shrubs in fall and early winter, rather than spring, to avoid destroying bird nests.
Benefits of landscaping with local native plants:

- Most native plants are drought tolerant, so they require less water.
- Natives rarely require fertilizers.
- Patches of habitat support urban-adapted wildlife, such as birds, bats and insects that help pollinate plants.
- Natives rarely require pesticides. Native plants provide their own natural pest control by attracting beneficial insects that prey on troublesome bugs.
- Local natives help preserve genetic diversity and the integrity of local ecosystems.

Water-wise Landscapes Conserve Water

Reduce water-use by replacing unnecessary lawn areas with native or drought-tolerant plants and with hardscape (hard surfaces), such as walkways and patios of concrete, brick, stone, decomposed granite, and permeable paving. For places where you do need a lawn, such as play areas, plant a low water-use turf variety.

When selecting a plant, find out:

- Is it water-thirsty or drought-tolerant?
- When is its growing season; when will it need water?

Most* local native plants are dormant or slow-growing during the hot, dry summers; their growth occurs during our rainy season. Once established, many survive with rainfall alone. This is the opposite for non-native, ornamental landscapes that grow slowly, or not at all during winter, but require irrigation throughout the summer.

- Group plants with similar watering needs together, and install water-saving irrigation systems (drip, micro-sprayers) to apply the correct amount for each hydro-zone or plant grouping. Trees require deep irrigation and may need separate irrigation lines.
- Readjust your irrigation schedule for season and weather conditions. Turn off automatic systems when it’s raining. Don’t run sprinklers when the wind is blowing. Water deeply and only when needed. Water plants in the early morning or evening. Adjust irrigation systems to water soil, not concrete and pavement.
- Apply mulch (bark, compost, sawdust, gravel) to reduce evaporation from the soil surface and to control weeds.

For information about conserving water in landscapes and using native and drought tolerant plants, refer to plant databases, such as the one at be<waterwise.com>. The website will also help you create a customized watering schedule for your yard. (See the Resources Directory insert for booklist and websites.)

*Not all native plants are dormant during summer: local riparian plants are the exception. They need water year round, as they are suited for waterways. Streamside vegetation, along dry or flowing waterways, is referred to as riparian.
Fire-wise Landscaping

Create a minimum distance of 100 ft. of *defensible space*, a landscape that deprives fire of fuel. Use fire-resistant plants and remove plants that are highly volatile.

Zone 1: **Lean, Clean and Green**
Zone 1 is from 0-30 ft. out from buildings. (See diagram on prior page.)
Grow plants that are small or succulent, such as irrigated lawns or ground covers and low growing, high-moisture shrubs. If you use native plants, use those that can be trimmed back during the dry season or that stay small with little trimming. Native plants that tolerate summer watering (see native plant lists) should be kept well hydrated.*

- Keep plants well hydrated to help them resist fire. Well-trimmed and watered plants are less likely to ignite than desiccated plants that have a buildup of dry stems and leaves.
- Fire needs fuel to burn, so remove any unnecessary plant materials. Prune dead wood and clean the landscape of dead plants, dry leaves, dry brush, firewood, and combustibles.
- Strategically place hard surfaces in your landscape, such as concrete, brick, or stone patios, driveways, pools, walls, and non-flammable decks, to interrupt the spread of fire to buildings.

Zone 2: **Reduced Fuel**
Create the reduced fuel zone beginning 30 ft. from buildings and extending 100 ft. or more, depending on steepness of slope and type/density of vegetation.

- Selectively remove large shrubby plants and dense groupings. Thin overcrowded plants. Mow grasses and weedy vegetation while they are green.
- Carefully remove excess plants without disturbing the soil; mow instead of disc, to prevent erosion and invasion of non-native plants.
- In chaparral plant communities, after thinning, reduce old, woody growth by cutting plants to their bases every few years, during the summer dormancy. Young plant tissues have higher moisture content and are less flammable. The heavy pruning eliminates mature, highly flammable vegetation but maintains root systems to protect the soil from erosion.
- Low branches and plants growing under trees create “ladders” for fire to climb. Eliminate ladder fuels, plants that serve as a link between grass and treetops. Prune the lower branches from the lower 1/3 of trees and shrubs. For trees or shrubs taller than 18 feet, prune the lower branches 6 feet above the ground. Remove dead leaves, twigs, and branches.
- In general, remove shrubs that are growing below trees, unless there is a space between the top of the shrub to the lowest branch of the tree that is three times the height of the shrub.

Remove plants that ignite easily and burn hot, such as those with volatile oils (sages) and those that accumulate fine woody branches or many small, dry leaves (chamise). In Zone 1, remove highly volatile plants (partial list below). In Zone 2, remove or widely space volatile plant types, including:

Chamise, *Adenostoma fasciculata*	Black sage, *Salvia mellifera*
Brittlebrush, *Encelia farinosa*	Woolly blue curls, *Trichostema lanatum*
California buckwheat, *Eriogonum fasciculatum*	Mountain blue curls, *Trichostema parishii*
White sage, *Salvia apiana*	Red Shank, *Adenostoma sparsifolium*
Some Eucalyptus and Acacia	All Pine, Cypress, Juniper, and Cedar species.

*For best results with native plants, water on overcast days during summer and fall.
Create Space Between Plants

Shrubs

From edge of one shrub to the edge of the next.

Flat to mild slope
(0% to 20% slope)
Two times (2x) the height of the shrub
(Two shrubs 2' high should be spaced 4' apart)

Mild to moderate slope
(20% to 40% slope)
Four times (4x) the height of the shrub
(Two shrubs 2' high should be spaced 8' apart)

Moderate to steep slope
(greater than 40% slope)
Six times (6x) the height of the shrub
(Two shrubs 2' high should be spaced 12' apart)

Trees

From edge of one tree canopy to the edge of the next.

Flat to mild slope
(0% to 20% slope)

Mild to moderate slope
(20% to 40% slope)

Moderate to steep slope
(greater than 40% slope)

Horizontal clearance information from the California Department of Forestry and Fire Protection.

Prevent erosion and stabilize eroding areas. If you have exposed soil surfaces, cover with mulch, and landscape as soon as possible. (Plants break the impact of falling rain, and their roots hold soil in place.) Eroding soil becomes sediment in runoff water, which pollutes waterways. Disturbed soil also encourages the growth of non-native weed species.

Retain thinned, deep-rooted native plants to anchor the soil and maintain slope stability. Generally, tall plants have deep, broad root systems. A goal of fire-wise landscaping is to maximize rooting depth while minimizing fuel volume.

For site-specific advice, contact your local Resource Conservation District (RCD) or the USDA Natural Resources Conservation Service (NRCS). For recommendations of native grasses for erosion control, contact the California Native Grasslands Society. (See the Resources Directory insert for contact information.)
Native Plants for Defensible Space Landscaping in the Inland Empire

If you prefer to create a landscape of native, low water-use plants, use these lists to design a yard that is fire-wise. Maintenance is essential; dead and dry plant material must be removed during dry, summer dormancy. Some native plants cannot tolerate irrigation during their summer dormancy, so may die if watered too frequently. Some need only infrequent, deep watering to remain hydrated during the dry summer and fall. The low-growing, low-fuel volume plants are suitable for Zone 1 (0-30 ft.) and beyond. Larger shrubs and trees, for Zone 2 (30-100+ ft.), must be widely spaced (see diagram on previous page).

Shrubs for Zone 2

Shrubs that need or tolerate water during summer.

Carpenteria, *Carpenteria californica*
Western redbud, *Cercis occidentalis*
Toyon, *Heteromeles arbutifolia*
Nevin’s barberry, *Mahonia nevini*
Coffeeberry, *Rhamnus californica*
Golden current, *Ribes aureum.*
California wild rose, *Rosa californica*
Western bridalwreath, *Spiraea douglasii*
Squawbush, *Rhus trilobata*

Shrubs that do not usually tolerate water during summer.

Low shrubs
Bladder pod, *Isomeris arborea*
Bush monkeyflower, *Mimulus aurantiacus*
Chaparral honeysuckle, *Lonicera subspicata*
Hollyleaf redberry, *Rhamnus ilicifolia*
Redberry, *Rhamnus crocea*
Yellow bush-penstemon, *Keckiella antirrhinoides*

Tall, deep-rooted shrubs that stay green during summer.
Bigberry manzanita, *Arctostaphylos glauca*
Thick-leaved lilac, *Ceanothus crassifolius*
Buck brush, *Ceanothus cuneatus*
Hairy California lilac, *Ceanothus oliganthus*
Mountain mahogany, *Cercocarpus betuloides*
Laurel sumac, *Malosma laurina*
Scrub oak, *Quercus berberidifolia*
Sugarbush, *Rhus ovata*
Lemonade berry, *Rhus integrifolia*

Trees for Zone 2

Trees that tolerate occasional water during summer.
Catalina cherry, *Prunus illicifolia* ssp. *Lyonii*
Coast live oak, *Quercus agrifolia*
Valley oak, *Quercus lobata*
Engelman oak, *Quercus engelmannii*

Trees that need water during summer.
Big leaf maple, *Acer macrophyllum*
White alder, *Alnus rombofolia*
So. California walnut, *Juglans californica*
California sycamore, *Platanus racemosa*
California black oak, *Quercus kelloggii*
Canyon live oak, *Quercus chrysolepis*
Willows: *Salix laevigata, S. gooddingii*
California bay laurel, *Umbellularia californica*
Perennial herbs that tolerate or need water during summer
Yarrow, Achillea millefolium
Columbine, Aquilegia formosa
Douglas iris, Iris douglasiana
Deer grass, Muhlenbergia rigens
Calif. blue-eyed grass, Sisyrinchium bellum
Meadow rue, Thalictrum fendleri var. polycarpum
Yerba mansa, Anemopsis californica
Coral bells, Heuchera ssp.
Common monkey flower, Mimulus guttatus
Scarlet bugler, Penstemon centranthifolius
California goldenrod, Solidago californica
Hedge nettle, Stachys bullata
Slender sedge, Carex praegracilis
Narrow-leaved milkweed, Asclepias fascicularis

Succulents, Ground Covers, and Low Shrubs
Keep hydrated; if needed, water monthly during summer.
San Diego sedge, Carex spissa
Wild lilac, Ceanothus griseus ‘horizontalis’
California fuchsia, Epilobium canum = Zauschneria
Golden yarrow, Eriophyllum confertiflorum
Lance-leaved live-forever, Dudleya lanceolata
Chalk dudleya, Dudleya pulverulenta
Parry’s nolina, Nolina parryi
Creeeping sage, Salvia sonomensis
Creeeping snowberry, Symphoricarpos mollis
Chaparral yucca, Yucca whipplei = Hesperoyucca whipplei
Valley cholla, Opuntia parryi
Coastal prickly pear, Opuntia littoralis

Annuals or summer-dormant perennials
No need for water during summer. There is little, if any, plant material above ground to burn.
California poppy, Eschscholzia californica
Larkspurs, delphinium, Delphinium parryi, D. cardinale
Wild Canterbury-bell, Phacelia minor
California figwort, Scrophularia californica
Baby blue eyes, Nemophila menziesii
Royal penstemon, Penstemon spectabilis
Lupine, Lupinus species (L. bicolor, L. succulentus, L. truncatus, L. sparsiflorus)

Habitat Land Stewards
If you live near conservation easement land or a waterway, there are ways that you can help. Be observant of activities that might be harmful to your nearby habitat lands, or form a habitat-watch group in your neighborhood. Like a neighborhood-watch, property owners help look out for neighborhood habitat and waterways, report illegal activity, and help educate neighbors about human impacts. For help forming a habitat-watch group, contact your local Resource Conservation District or the Riverside Land Conservancy.
WARD 2 BEAUTIFICATION PROJECT
Volunteer for Litter Cleanups and Graffiti Abatement

SATURDAY • FEB 6 • 2010
From 8:00 a.m. to 11:00 a.m.

LINCOLN PARK
4261 Park Ave. Riverside, CA 92507

B.Y.O.W.B. - Bring Your Own Water Bottle
… KRCB will provide refills, & all project tools
No sandals or flip-flops; must wear long pants
Receive community service hours

MUST RSVP! SIGN UP NOW TO VOLUNTEER:
Keep Riverside Clean & Beautiful • 3985 University Ave. • Riverside, CA 92501 • fax 951.683.2670

For project information contact Tijana: 951.683.7100 x212, or tquilici@riverside-chamber.com

For Connections, Information & Access to Business Opportunities
Contact the Greater Riverside Chambers of Commerce at: 951.683.7100

Keep Riverside Clean & Beautiful is a community program sponsored by the City of Riverside Public Works Department
and the Greater Riverside Chambers of Commerce
Our Mission… To instill a sense of community pride by creating partnerships that work toward the beautification of the City
Stormwater Pollution

What you should know for...

Outdoor Cleaning Activities and Professional Mobile Service Providers

Storm drains are NOT connected to sanitary sewer systems and treatment plants!

The primary purpose of storm drains is to carry rain water away from developed areas to prevent flooding. Pollutants discharged to storm drains are transported directly into rivers, lakes and streams. Soaps, degreasers, automotive fluids, litter and a host of materials are washed off buildings, sidewalks, plazas and parking areas. Vehicles and equipment must be properly managed to prevent the pollution of local waterways.

Unintentional spills by mobile service operators can flow into storm drains and pollute our waterways. Avoid mishaps. Always have a Spill Response Kit on hand to clean up unintentional spills. Only emergency Mechanical repairs should be done in City streets, using drip pans for spills. Plumbing should be done on private property. Always store chemicals in a leak-proof container and keep covered when not in use. Window/Water Washing waste water shouldn’t be released into the streets, but should be disposed of in a sanitary sewer, landscaped area or in the soil. Soiled Carpet Cleaning water should be filtered before being discharged into the sanitary sewer. Dispose of all litter debris properly. Car Washing/Detailing operators should wash cars on private property and use a regulated hose nozzle for water flow control and runoff prevention. Capture and dispose of waste water and chemicals properly. Remember, storm drains are for receiving rain water runoff only.

REPORT ILLEGAL STORM DRAIN DISPOSAL
1-800-506-2555 or e-mail us at lcpdes@cfl.rr.com

- Riverside County Flood Control and Water Conservation District
 www.ridco.org

Online resources include:
- California Storm Water Quality Association
 www.csawa.org
- State Water Resources Control Board
 www.waterboards.ca.gov
- Power Washers of North America
 www.powerwash.org

REPORT ILLEGAL STORM DRAIN DISPOSAL
1-800-506-2555
Help Protect Our Waterways!
Use these guidelines for Outdoor Cleaning Activities and Wash Water Disposal

Did you know that disposing of pollutants into the street, gutter, storm drain or body of water is PROHIBITED by law and can result in stiff penalties?

Best Management Practices

Waste wash water from Mechanics, Plumbers, Window/Powder Washers, Carpet Cleaners, Car Washing and Mobile Detailing activities may contain significant quantities of motor oil, grease, chemicals, dirt, detergents, brake pad dust, litter and other materials.

Best Management Practices, or BMPs as they are known, are guides to prevent pollutants from entering the storm drains. Each of us can do our part to keep storm water clean by using the suggested BMPs below:

Simple solutions for both light and heavy duty jobs:

Do...consider dry cleaning methods first such as a mop, broom, rag or wire brush. Always keep a spill response kit on site.

Do...prepare the work area before power cleaning by using sand bags, rubber mats, vacuum booms, containment pads or temporary berms to keep wash water away from the gutters and storm drains.

Do...use vacuums or other machines to remove and collect loose debris or litter before applying water.

Using Cleaning Agents

Try using biodegradable/phosphate-free products. They are easier on the environment, but don’t confuse them for being toxic free. Soapy water entering the storm drain system can impact the delicate aquatic environment.

Screening Wash Water

Conduct thorough dry cleanup before washing exterior surfaces, such as buildings and decks with loose paint, sidewalks or plaza areas. Keep debris from entering the storm drain after cleaning by first passing the wash water through a “20 mesh” or finer screen to catch the solid materials, then dispose of the mesh in a refuse container. Do not let the remaining wash water enter a street, gutter or storm drain.

Drain Inlet Protection & Collection of Wash Water

- Prior to any washing, block all storm drains with an impervious barrier such as sandbags or berms, or seal the storm drain with plugs or other appropriate materials.
- Create a containment area with berms and traps or take advantage of a low spot to keep wash water contained.
- Wash vehicles and equipment on grassy or gravel areas so that the wash water can seep into the ground.
- Pump or vacuum up all wash water in the contained area.

Concrete/Coring/Saw Cutting and Drilling Projects

Protect any down-gradient inlet by using dry activity techniques whenever possible. If water is used, minimize the amount of water used during the coring/drilling or saw cutting process. Place a barrier of sandbags and/or absorbent berms to protect the storm drain inlet or watercourse. Use a shovel or wet vacuum to remove the residue from the pavement. Do not wash residue or particulate matter into a storm drain inlet or watercourse.

Think Water Conservation

Minimize water use by using high pressure, low volume nozzles. Be sure to check all hoses for leaks. Water is a precious resource, don’t let it flow freely and be sure to shut it off in between uses.

Report illegal storm drain disposal, Call Toll Free 1-800-506-2555
The primary purpose of storm drains is to carry rain water away from developed areas to prevent flooding. Pollutants discharged to storm drains are transported directly into rivers, lakes and streams. Soaps, degreasers, automotive fluids, litter and a host of materials are washed off buildings, sidewalks, plazas and parking areas. Vehicles and equipment must be properly managed to prevent the pollution of local waterways.

Unintentional spills by mobile service operators can flow into storm drains and pollute our waterways. Avoid mishaps. Always have a Spill Response Kit on hand to clean up unintentional spills. Only emergency Mechanical repairs should be done in City streets and use drip pans for spills. Plumbing should be done on private property. Always store chemicals in a leak-proof container and keep covered when not in use. Window/Power Washing waste water shouldn't be released into the streets, but should be disposed of in a sanitary sewer, landscaped area or in the soil. Soiled Carpet Cleaning wash water should be filtered before being discharged into the sanitary sewer. Dispose of all filter debris properly. Car Washing/Detailing operators should wash cars on private property and use a regulated hose nozzle for water flow control and runoff prevention. Capture and dispose of waste water and chemicals properly. Always prevent runoff water from entering storm drains.

StormDrains are NOT connected to sanitary sewer systems and treatment plants!

OUTDOOR CLEANING ACTIVITIES AND PROFESSIONAL MOBILE SERVICE PROVIDERS

- **Car Washing / Mobile Detailers**
- **Window and Carpet Cleaners**
- **Power Washers**
- **Waterproofers / Street Sweepers**
- Equipment cleaners or degreasers and all mobile service providers

Storm drain pollution prevention information for:

- Car Washing / Mobile Detailers
- Window and Carpet Cleaners
- Power Washers
- Waterproofers / Street Sweepers
- Equipment cleaners or degreasers and all mobile service providers

Helpful telephone numbers and links:

WATER AGENCY LIST in Riverside County

<table>
<thead>
<tr>
<th>Agency</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Banning</td>
<td>(951) 922-3130</td>
</tr>
<tr>
<td>City of Beaumont</td>
<td>(951) 769-8520</td>
</tr>
<tr>
<td>City of Bythe</td>
<td>(760) 922-6161</td>
</tr>
<tr>
<td>City of Coachella</td>
<td>(760) 398-3502</td>
</tr>
<tr>
<td>Coachella Valley Water District</td>
<td>(760) 398-2651</td>
</tr>
<tr>
<td>City of Corona</td>
<td>(951) 736-2259</td>
</tr>
<tr>
<td>Desert Center, CSA #51</td>
<td>(760) 227-3203</td>
</tr>
<tr>
<td>Eastern Municipal Water District</td>
<td>(951) 928-3777</td>
</tr>
<tr>
<td>Elsinore Valley MWD</td>
<td>(951) 674-3146</td>
</tr>
<tr>
<td>Farm Mutual Water Company</td>
<td>(951) 244-4198</td>
</tr>
<tr>
<td>City of Hemet</td>
<td>(951) 765-3712</td>
</tr>
<tr>
<td>Idyllwild Water District</td>
<td>(951) 659-2143</td>
</tr>
<tr>
<td>Jurupa Community Services District</td>
<td>(951) 360-8795</td>
</tr>
<tr>
<td>Lake Hemet MWD</td>
<td>(951) 658-3241</td>
</tr>
<tr>
<td>Lake Elsinore MWD</td>
<td>(951) 277-1414</td>
</tr>
<tr>
<td>March Air Force Base</td>
<td>(951) 656-7000</td>
</tr>
<tr>
<td>Mission Springs Water District</td>
<td>(760) 329-6448</td>
</tr>
<tr>
<td>City of Palm Springs</td>
<td>(760) 323-8253</td>
</tr>
<tr>
<td>Rancho Caballero</td>
<td>(951) 780-9272</td>
</tr>
<tr>
<td>Rancho California Water District</td>
<td>(951) 296-6900</td>
</tr>
<tr>
<td>Ripley, CSA #62</td>
<td>(760) 922-9561</td>
</tr>
<tr>
<td>City of Riverside</td>
<td>(951) 351-6170</td>
</tr>
<tr>
<td>Rubidoux Services District</td>
<td>(951) 684-7580</td>
</tr>
<tr>
<td>Silent Valley Club, Inc</td>
<td>(951) 849-4501</td>
</tr>
<tr>
<td>Valley Sanitary District</td>
<td>(760) 347-2356</td>
</tr>
<tr>
<td>Western Municipal Water District</td>
<td>(951) 789-5000</td>
</tr>
<tr>
<td>Yucca Valley Water District</td>
<td>(909) 797-5117</td>
</tr>
</tbody>
</table>

REPORT ILLEGAL STORM DRAIN DISPOSAL

1-800-506-2555 or online at www.rcflood.org

Online resources include:

- Riverside County Flood Control and Water Conservation District www.rcflood.org
- California Storm Water Quality Association www.casqa.org
- State Water Resources Control Board www.swrcb.ca.gov/
- Power Washers of North America www.thepwna.org
- [Riverside County Flood Control and Water Conservation District](http://www.rcflood.org)
- [California Storm Water Quality Association](http://www.casqa.org)
- [State Water Resources Control Board](http://www.swrcb.ca.gov/)
- [Power Washers of North America](http://www.thepwna.org)
Help Protect Our Waterways!

Use These Guidelines For Outdoor Cleaning Activities and Wash Water Disposal

Did you know that disposing of pollutants into the street, gutter, storm drain or nearest body of water is PROHIBITED by law and can bring about stiff penalties.

Best Management Practices

Waste wash water from Mechanics, Plumbers, Window/Power Washers, Carpet Cleaners, Car Washing and Mobile Detailing activities may contain significant quantities of motor oil, grease, chemicals, dirt, detergents, brake pad dust, litter and other materials.

Best Management Practices, or BMPs as they are known, are guides to prevent pollutants from entering the storm drains. Each of us can do our part to keep storm water clean by using the suggested BMPs below:

Simple solutions for both light and heavy duty jobs:

Do...
- ...obtain the property owner’s permission to dispose small amounts of power washing waste water to landscaped, gravel or unpaved surfaces.
- ...check with your local sanitary sewer agency’s policies on wash water disposal regulations. (See list on reverse side).
- ...be aware that if discharging to landscape areas, soapy wash water may damage landscaping. Residual wash water may remain on paved surfaces to evaporate. Sweep up solid residuals and dispose of properly. Vacuum booms are another option for capturing and collecting wash water.
- ...not let... wash or waste water from sidewalk, plaza or building cleaning go into a street or storm drain.

Using Cleaning Agents

Try using biodegradable/phosphate-free products. They are easier on the environment, but don’t confuse them for being toxic free. Soapy water entering the storm drain system can impact the delicate aquatic environment.

Screening Wash Water

A thorough dry cleanup before washing exterior surfaces, such as buildings and decks without loose paint, sidewalks, or plaza areas should be sufficient to protect receiving waters. Keep debris from entering the storm drain after cleaning by first passing the wash water first through a “20 mesh” or finer screen to catch the solid materials, then disposing the mesh in a refuse container.

Drain Inlet Protection & Collection of Wash Water

- Prior to any washing, block all storm drains with an impervious barrier such as sandbags or berms, or seal the storm drain with plugs or rubber mats.
- Create a containment area with berms and traps or take advantage of a low spot to keep wash water contained.
- Wash vehicles and equipment on grassy or gravel areas so that the wash water can seep into the ground.
- Pump or vacuum up all wash water in the contained area.

Equipment and Supplies

For special materials, equipment and supplies:

- New Pig — (800) 468-4647
- Lab Safety Supply — (800) 356-0783
- C&H — (800) 558-90966
- W.W. Grainger — (800) 994-9174
- Cleaning Equipment Trade Association — (800) 441-0111

Think Water Conservation

Minimize water use by using high pressure, low volume nozzles. Be sure to check all hoses for leaks.
Riverside County has two drainage systems - sanitary sewers and storm drains. The storm drain system is designed to help prevent flooding by carrying excess rainwater away from streets. Since the storm drain system does not provide for water treatment, it also serves the function of transporting pollutants directly to our waterways.

In recent years, awareness of the need to protect water quality has increased. In 1972, the Federal Clean Water Act was amended to establish a framework for national pollutant discharge elimination system (NPDES), which is the basic means by which the Federal government ordered states to regulate discharges from industrial and other point sources. The industrial stormwater general permit was issued to California in 1991.

Did you know...?

Many industrial facilities and manufacturing operations must obtain coverage under the national pollutant discharge elimination system (NPDES). In 1987, the Federal Clean Water Act was amended to establish a framework for regulating industrial stormwater discharges under the national pollutant discharge elimination system (NPDES). The basic means by which the Federal government ordered states to regulate discharges from industrial and other point sources. The industrial stormwater general permit was issued to California in 1991.

FIND OUT

General Permit

Industrial Activities Storm Water Pollution... What you should know

Many industrial facilities and manufacturing operations must obtain coverage under the national pollutant discharge elimination system (NPDES). In 1987, the Federal Clean Water Act was amended to establish a framework for regulating industrial stormwater discharges under the national pollutant discharge elimination system (NPDES). The basic means by which the Federal government ordered states to regulate discharges from industrial and other point sources. The industrial stormwater general permit was issued to California in 1991.

For Information: (909) 955-1111.
How Do I Know If I Need A Permit?

The basic requirements of the Permit are:

1. The facility must eliminate any non-stormwater discharges or obtain a separate permit for such discharges.
2. The facility must develop and implement a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP must identify sources of pollutants that may be exposed to stormwater. Once the sources of pollutants have been identified, the facility operator must develop and implement Best Management Practices (BMPs) to minimize or prevent polluted runoff.

Guidance in preparing a SWPPP is available from a document prepared by the California Storm Water Quality Task Force called the California Storm Water Best Management Practice Handbook.

3. The facility must develop and implement a Monitoring Program that includes conducting visual observations and collecting samples of the facility's storm water discharges associated with industrial activity. The General Permit requires that the analysis be conducted by a laboratory that is certified by the State of California.
4. The facility must submit to the Regional Board, every July 1, an annual report that includes the results of its monitoring program.

A Non-Storm Water Discharge is... any discharge to a storm drain system that is not composed entirely of storm water. The following non-storm water discharges are authorized by the General Permit: fire hydrant flushing; potable water sources, including potable water related to the operation, maintenance, or testing of potable water systems; drinking fountain water; atmospheric condensates including refrigeration; air conditioning; irrigation drainage; landscape watering; springs; non-contaminated ground water; foundation or footing drainage; and sea water infiltration where the sea waters are discharged back into the sea water source.

A BMP is... a technique, process, activity, or structure used to reduce the pollutant content of a storm water discharge. BMPs may include simple, non-structural methods such as good housekeeping, staff training and preventive maintenance. Additionally, BMPs may include structural modifications such as the installation of berms, canopy or treatment control (e.g., settling basins, oil/water separators, etc.)

How do I obtain coverage under the Industrial Activities Storm Water General Permit?

Obtain a permit application package from your local Regional Water Quality Control Board listed on the back of this brochure or the State Water Resources Control Board (SWRCB). Submit a completed Notice of Intent (NOI) form, site map and the appropriate fee ($250 or $500) to the SWRCB. Facilities must submit an NOI thirty (30) days prior to beginning operation. Once you submit the NOI, the State Board will send you a letter acknowledging receipt of your NOI and will assign your facility a waste discharge identification number (WDID No.). You will also receive an annual fee billing. These billings should roughly coincide with the date the State Board processed your original NOI submittal.

How do I obtain coverage under the Industrial Activities Storm Water General Permit?

Following are general descriptions of the industry categories types that are regulated by the Industrial Activities Storm Water General Permit. Contact your local Region Water Quality Control Board to determine if your facility/operation requires coverage under the Permit.

- Facilities such as cement manufacturing; feedlots; fertilizer manufacturing; petroleum refining; phosphate manufacturing; steam electric power generation; coal mining; mineral mining and processing; ore mining and dressing; and asphalt emulsion;
- Facilities classified as lumber and wood products (except wood kitchen cabinets); pulp, paper, and paperboard mills; chemical producers (except some pharmaceutical and biological products); petroleum and coal products; leather production and products; stone, clay and glass products; primary metal industries; fabricated structural metal; ship and boat building and repairing;
- Active or inactive mining operations and oil and gas exploration, production, processing, or treatment operations;
- Hazardous waste treatment, storage, or disposal facilities;
- Facilities involved in the recycling of materials, including metal scrap yards, battery reclaimers, salvage yards, and automobile junkyards;
- Steam electric power generating facilities, facilities that generate steam for electric power by combustion;
- Transportation facilities that have vehicle maintenance shops, fueling facilities, equipment cleaning operations, or airport deicing operations. This includes school bus maintenance facilities operated by a school district;
- Sewage treatment facilities;
- Facilities that have areas where material handling equipment or activities, raw materials, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to stormwater.
- Landfills, land application sites and open dumps that receive or have received any industrial waste; unless there is a new overlying land use such as a golf course, park, etc., and there is no discharge associated with the landfill;
- Facilities involved in the recycling of materials, including metal scrap yards, battery reclaimers, salvage yards, and automobile junkyards;
- Steam electric power generating facilities, facilities that generate steam for electric power by combustion;
- Transportation facilities that have vehicle maintenance shops, fueling facilities, equipment cleaning operations, or airport deicing operations. This includes school bus maintenance facilities operated by a school district;
- Sewage treatment facilities;
- Facilities that have areas where material handling equipment or activities, raw materials, intermediate products, final products, waste materials, by-products, or industrial machinery are exposed to stormwater.

The basic requirements of the Permit are:

1. The facility must eliminate any non-stormwater discharges or obtain a separate permit for such discharges.
2. The facility must develop and implement a Storm Water Pollution Prevention Plan (SWPPP). The SWPPP must identify sources of pollutants that may be exposed to stormwater. Once the sources of pollutants have been identified, the facility operator must develop and implement Best Management Practices (BMPs) to minimize or prevent polluted runoff.

Guidance in preparing a SWPPP is available from a document prepared by the California Storm Water Quality Task Force called the California Storm Water Best Management Practice Handbook.

3. The facility must develop and implement a Monitoring Program that includes conducting visual observations and collecting samples of the facility's storm water discharges associated with industrial activity. The General Permit requires that the analysis be conducted by a laboratory that is certified by the State of California.
4. The facility must submit to the Regional Board, every July 1, an annual report that includes the results of its monitoring program.

A Non-Storm Water Discharge is... any discharge to a storm drain system that is not composed entirely of storm water. The following non-storm water discharges are authorized by the General Permit: fire hydrant flushing; potable water sources, including potable water related to the operation, maintenance, or testing of potable water systems; drinking fountain water; atmospheric condensates including refrigeration; air conditioning; irrigation drainage; landscape watering; springs; non-contaminated ground water; foundation or footing drainage; and sea water infiltration where the sea waters are discharged back into the sea water source.

A BMP is... a technique, process, activity, or structure used to reduce the pollutant content of a storm water discharge. BMPs may include simple, non-structural methods such as good housekeeping, staff training and preventive maintenance. Additionally, BMPs may include structural modifications such as the installation of berms, canopy or treatment control (e.g., settling basins, oil/water separators, etc.)

WARNING: There are significant penalties for non-compliance: a minimum fine of $5,000 for failing to obtain permit coverage, and, up to $10,000 per day, per violation plus $10 per gallon of discharge in excess of 1,000 gallons.
Saltwater Pools

- Salt water pools, although different from regular pools, are in fact, sanitized using chlorine. A salt-chlorine generator separates the chlorine and sodium molecules in salt and reintroduces them into the pool water. The same harmful effects of chlorine still apply.

- A salt water pool is still maintained with chemicals such as Muricite acid, soda ash and sodium carbonate to help keep a proper pH, total Alkalinity, Calcium Hardness and Stabilizer levels.

It may be illegal to discharge salt water to land. The salt may kill plants and the build-up of salt in soil puts animals, plants, and groundwater at risk. Consult your city representatives to determine local requirements regarding salt water drainage.

NEVER put unused chemicals into the trash, onto the ground or down a storm drain.

IMPORTANT: The discharge of pollutants into the street, gutter, storm drain system or waterways - without a permit or waiver - is strictly prohibited by local ordinances, state and federal law. Violations may result in monetary fines and enforcement actions.

Guidelines for Maintaining your...

Swimming Pool, Jacuzzi and Garden Fountain

RIVERSIDE COUNTY WATER AGENCIES:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Banning</td>
<td>(951) 922-3130</td>
</tr>
<tr>
<td>City of Beaumont/Cherry Valley</td>
<td>(951) 845-9581</td>
</tr>
<tr>
<td>City of Blythe</td>
<td>(760) 922-6161</td>
</tr>
<tr>
<td>City of Coachella</td>
<td>(760) 398-3502</td>
</tr>
<tr>
<td>City of Corona</td>
<td>(951) 736-2263</td>
</tr>
<tr>
<td>City of Hemet</td>
<td>(951) 765-3710</td>
</tr>
<tr>
<td>City of Norco</td>
<td>(951) 270-5607</td>
</tr>
<tr>
<td>City of Riverside Public Works</td>
<td>(951) 351-6140</td>
</tr>
<tr>
<td>City of San Jacinto</td>
<td>(951) 694-4941</td>
</tr>
<tr>
<td>Coachella Valley Water District</td>
<td>(760) 398-2651</td>
</tr>
<tr>
<td>Desert Water Agency (Palm Springs)</td>
<td>(760) 323-4971</td>
</tr>
<tr>
<td>Eastern Municipal Water District</td>
<td>(951) 928-3777</td>
</tr>
<tr>
<td>Elsinore Valley Municipal Water District</td>
<td>(951) 674-3146</td>
</tr>
<tr>
<td>Elsinore Water District</td>
<td>(951) 674-2168</td>
</tr>
<tr>
<td>Farm Mutual Water Company</td>
<td>(951) 244-4198</td>
</tr>
<tr>
<td>Idyllwild Water District</td>
<td>(951) 659-2143</td>
</tr>
<tr>
<td>Indio Water Authority</td>
<td>(760) 391-4129</td>
</tr>
<tr>
<td>Jurupa Community Services District</td>
<td>(951) 685-7434</td>
</tr>
<tr>
<td>Lee Lake Water</td>
<td>(951) 658-3241</td>
</tr>
<tr>
<td>Mission Springs Water</td>
<td>(760) 329-6448</td>
</tr>
<tr>
<td>Rancho California Water District</td>
<td>(951) 296-6900</td>
</tr>
<tr>
<td>Rialto, CWA #6</td>
<td>(760) 922-4551</td>
</tr>
<tr>
<td>Riverside Co. Service Area #51</td>
<td>(760) 327-3203</td>
</tr>
<tr>
<td>Rubidoux Community Services District</td>
<td>(951) 694-7580</td>
</tr>
<tr>
<td>Valley Sanitary District</td>
<td>(760) 347-2356</td>
</tr>
<tr>
<td>Western Municipal Water District</td>
<td>(951) 789-5000</td>
</tr>
<tr>
<td>Yucca Valley Water District</td>
<td>(760) 397-5117</td>
</tr>
</tbody>
</table>

CALL 1-800-506-2555 to:

- Report clogged storm drains or illegal storm drain disposal from residential, industrial, construction and commercial sites into public streets, storm drains and/or water bodies.
- Find out about our various storm drain pollution prevention materials.
- Locate the dates and times of Household Hazardous Waste (HHW) Collection Events.
- Request adult, neighborhood, or classroom presentations.
- Locate other County environmental services.
- Receive grasscycling information and composting workshop information.

Or visit our Riverside County Flood Control and Water Conservation District website at: www.rcflood.org

Other links to additional storm drain pollution information:

- County of Riverside Environmental Health: www.altroeh.org
- State Water Resources Control Board: www.waterboards.ca.gov
- California Stormwater Quality Association: www.csqa.org
- United States Environmental Protection Agency (EPA): www.epa.gov/compliance/assistance (Compliance assistance information)
Where does the water go?

Pool, Jacuzzi and Fountain wastewater and rainwater runoff (also called stormwater) that reach streets can enter the storm drain and be conveyed directly into local streams, rivers and lakes.

A storm drain’s purpose is to prevent flooding by carrying rainwater away from developed areas. Storm drains are not connected to sanitary sewers systems and treatment plants.

Wastewater, from residential swimming pools, Jacuzzis, fishponds and fountains, often contains chemicals used for sanitizing or cleansing purposes. Toxic chemicals (such as chlorine or copper-based algaecides) may pollute the environment when discharged into a storm drain system.

The Cities and County of Riverside have adopted ordinances that prohibit the discharge of wastewater to the street and storm drain system.

Discharge Regulations

Regulatory requirements for discharging wastewater from your pool may differ from city to city. Chlorinated water should not be discharged into the street, storm drain or surface waters. Check with your water agency to see if disposal to the sanitary sewer line is allowed for pool discharges (see reverse for Riverside County sewer agencies).

If allowed, a hose can be run from the pool, Jacuzzi, or fountain to the private sewer cleanout, washing machine drain or a sink or bathtub.

If you cannot discharge to the sewer, you may drain your fountain, pool, or jacuzzi to your landscaping by following these guidelines:

First, reduce or eliminate solids (e.g., debris, leaves or dirt) in the pool water and allow the chemicals in the pool water to dissipate before draining the pool (this could take up to 7 days, verify using a home pool test kit).

Second, slowly drain to a landscaped area away from buildings or structures. Control the flow to prevent soil erosion; it may take more than one day to empty. Do not allow sediment to enter the street, gutter or storm drain.

Maintenance & Chemicals

Cleaning Filters

Filter rinse water and backwash must be discharged to the sanitary sewer, on-site septic tank, and drain field system (if properly designed and adequately sized), or a seepage pit. Alternatively, rinse water or backwash may be diverted to landscaped or dirt areas. Filter media and other non-hazardous solids should be picked up and disposed of in the trash.

Algaecides

Avoid using copper-based algaecides unless absolutely necessary. Control algae with chlorine, organic polymers or other alternatives to copper-based pool chemicals. Copper is a heavy metal that can be toxic to aquatic life when you drain your pool.

Chemical Storage and Handling

- Use only the amount indicated on product labels
- Store chlorine and other chemicals in a covered area to prevent runoff. Keep out of reach of children and pets.
- Chlorine kits, available at retail swimming pool equipment and supply stores, should be used to monitor the chlorine and pH levels before draining your pool.
- Chlorine and other pool chemicals should never be allowed to flow into the gutter or storm drain system.

Take unwanted chemicals to a Household Hazardous Waste (HHW) Collection Event. There's no cost for taking HHW items to collection events—it's FREE! Call 1-800-506-2555 for a schedule of HHW events in your community.
For more information, please call the Riverside County’s “Only Rain Down the Storm Drain” Pollution Prevention Program at 1-800-506-2555 or www.rcflood.org

or

To Report A Sewage Spill: During normal business hours (8:00 a.m to 5:00 p.m), call Riverside County Department of Environmental Health at 951-358-5172 or 1-800-304-2226 www.rivcoeh.org

After business hours, on weekends or holidays, call toll free 1-800-506-2555

For emergencies, dial 911.

www.NOWRA.ORG - A website providing resources and education on the design and maintenance of septic tank systems.

www.epa.gov/owm/septic - Including septic tank information, the Environmental Protection Agency has a large E-vault of environmental information and resources.

The Riverside County “Only Rain Down the Storm Drain” Pollution Prevention Program gratefully acknowledges Orange County’s Storm Water Program for their contribution to this brochure.
Tips for Maintaining a Septic Tank System

Households that are not served by public sewers usually depend on a septic tank system* to treat and dispose of wastewater. A well designed, installed and regularly maintained septic system can provide years of reliable service. However, when these systems fail to operate properly, significant damage can occur to property and the environment. The homeowner is responsible for these damages and may be subject to fines. Therefore, it is important to follow these simple tips when using a septic tank system:

Conserve Water
The more wastewater produced, the more the soil must absorb. By conserving water, the life of the drain field will be extended and the chance of a system failure is decreased.

Reduce your water use by:
- Using water saving devices
- Repairing leaky faucets and plumbing fixtures
- Reducing toilet reservoir volume or flow
- Taking shorter showers
- Washing only full loads of dishes and laundry
- Limit the number of highwater use activities done at the same time.

Never Flush Harmful Materials Into The Septic Tank
Grease, cooking oils, newspaper, paper towels, rags, coffee grounds, sanitary napkins and cigarettes do not easily decompose in the tank. Chemicals such as solvents, soils, unused prescriptions, over-the-counter medications, paints and pesticides are harmful to the system's operation and may pollute the groundwater. For information on the proper disposal of household hazardous waste, call toll free 1-800-506-2555. Also, never use septic tank additives, commercial septic tank cleaners, yeast, sugar, etc. These products are not necessary and some may be harmful to your system.

Keep Runoff Away From The System
Water from surfaces such as roofs, driveways or patios should be diverted away from the septic tank and drain field area.

Protect The System From Damage
Don't park, pave or put livestock or heavy objects, equipment or machinery over the drainfield. The pressure can compact the soil or damage pipes. Also check your septic system map prior to constructing buildings or a pool on the property. The area over the absorption field and tank should be kept undisturbed with only grass on top. Trees or shrubs, which may clog and damage the drain, should be removed from the area.

Keep Records
Chart the location of your septic tank and keep up-to-date service and repair records for future reference.

Inspect The System
Monitor the system yearly to ensure it is not at an "early warning level." Inspect the drain field and down slope areas for odors, wet spots, or surfacing of sewage. This may be an early indication of a problem with the system. Also, have the system inspected by a licensed septic tank professional every three to five years.

Pump The Tank When Needed
Routine pumping can prevent failures, such as clogging and backup into the home. Never pump full or failing septic systems to the street or storm drain.

Never Enter The Septic Tank
Poisonous gases or the lack of air can be fatal. A certified professional should complete any work to the tank.

* Contact your local collection agency or city for assistance in determining if your home is served by a septic tank.
This is to inform you that our staff found the following pollutants in the storm sewer system in your area. This storm sewer system leads directly to

- Motor oil
- Oil filters
- Antifreeze/transmission fluid
- Paint
- Solvent/degreaser
- Cooking grease
- Detergent
- Home improvement waste (concrete, mortar)
- Pet waste
- Yard waste (leaves, grass, mulch)
- Excessive dirt and gravel
- Trash
- Construction debris
- Pesticides and fertilizers
- Other

For more information or to report an illegal discharge of pollutants, please call:

Riverside County Residents, Call . . .
1-800-506-2555

www.epa.gov/npdes/stormwater
EPA 833-F-03-002
April 2003
Stormwater runoff is precipitation from rain or snowmelt that flows over the ground. As it flows, it can pick up debris, chemicals, dirt, and other pollutants and deposit them into a storm sewer system or waterbody. Anything that enters a storm sewer system is discharged untreated into the waterbodies we use for swimming, fishing, and providing drinking water.

Remember:
Only Rain Down the Drain

To keep the stormwater leaving your home or workplace clean, follow these simple guidelines:

★ Use pesticides and fertilizers sparingly.
★ Repair auto leaks.
★ Dispose of household hazardous waste, used auto fluids (antifreeze, oil, etc.), and batteries at designated collection or recycling locations.
★ Clean up after your pet.
★ Use a commercial car wash or wash your car on a lawn or other unpaved surface.
★ Sweep up yard debris rather than hosing down areas. Compost or recycle yard waste when possible.
★ Clean paint brushes in a sink, not outdoors. Properly dispose of excess paints through a household hazardous waste collection program.
★ Sweep up and properly dispose of construction debris like concrete and mortar.
Homeowners living adjacent to streams, lakes and rivers may be impacted by bank erosion or sediment deposition that can occur due to natural processes or man-made causes. Homeowner efforts to mitigate impacts to their property from erosion or sedimentation can negatively affect native plants and animals, lessen a watercourse’s ability to convey storm flows, cause erosion or sedimentation problems on other properties and/or cause flooding. Below is some guidance regarding actions a homeowner should take before attempting to protect their property:

- In some cases, any alteration of a watercourse may be prohibited by local land-use regulations, e.g., a “drainage easement”, “flowage easement”, “floodplain” or “Environmental Constraint Sheet”. You should contact your local City or County building or grading department to determine if these limitations apply to watercourses in or adjacent to your property.

- In cases where alterations are not expressly prohibited, grading, filling or otherwise altering a watercourse - even those that flow intermittently, such as dry washes that only flow when it rains – may require approval from one or more of the following regulating agencies:

<table>
<thead>
<tr>
<th>REGULATING AGENCY</th>
<th>POTENTIAL REGULATORY PERMIT</th>
<th>WHERE TO CONTACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local (City, County) land use authority *</td>
<td>• Grading Permit
• Floodplain Review</td>
<td>White pages under City/County Government</td>
</tr>
<tr>
<td>California Department of Fish and Game*</td>
<td>• Fish and Game Section 1602 Agreements</td>
<td>www.dfg.ca.gov</td>
</tr>
<tr>
<td>US Army Corps of Engineers*</td>
<td>• Clean Water Act Section 404 Permit</td>
<td>www.usace.army.mil</td>
</tr>
<tr>
<td>California State Water Resources Control Board*</td>
<td>• Clean Water Act Section 401 Water Quality Certification or Waste Discharge Requirements</td>
<td>www.swrcb.ca.gov</td>
</tr>
</tbody>
</table>

*Fees may be applicable.

- Property owners should **CONTACT EACH REGULATING AGENCY** (listed above) for the necessary approval(s) **BEFORE**:

1. **Removing** soil, rock or plant material from a streambed or the bank of a stream;

(over)
More on Stream Stabilization

2. **Placing** any waste, material (dirt, rubble) or structures (dams, revetments) on a stream bank or within a stream;

3. **Diverting, obstructing, or otherwise modifying** the bed, channel, or bank of any river, stream or lake;

4. **Dumping or depositing** debris, liquid or solid waste, soil, manure or other material that may be conveyed into a wash, stream, river or lake; or

5. **Armoring or stabilizing** a stream bank against stream bank erosion.

Some other examples of regulated stream alteration activities include vegetation removal or construction of road crossings or corrals. Property owners are responsible for obtaining all necessary approvals prior to commencing any of the aforementioned activities.

- **The Natural Resources Conservation Service (NRCS)** makes onsite recommendations (currently free of charge) to private land owners for effective erosion control. For help in protecting your property from stream erosion please contact:

<table>
<thead>
<tr>
<th>NATURAL RESOURCES CONSERVATION SERVICE (NRCS)</th>
<th>CONTACT</th>
<th>PHONE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside County (West of the San Jacinto Mtns.)</td>
<td>Robert Hewitt</td>
<td>(951) 654-7139</td>
</tr>
<tr>
<td>Beaumont and Banning Area</td>
<td>Jim Earsom</td>
<td>(909) 799-7407</td>
</tr>
<tr>
<td>Desert Area</td>
<td>Sam Aslam</td>
<td>(760) 347-7658</td>
</tr>
<tr>
<td>Blythe</td>
<td>Sam Cobb</td>
<td>(760) 922-3446</td>
</tr>
</tbody>
</table>

- **YOU can help protect water quality:**
Prevent trash, debris, manure and waste of any kind from washing off home sites and streets into gutters, storm drains and dry watercourses. During storms, these watercourses can convey pollution into more sensitive streams and rivers.

County-wide Service Information

- Household hazardous wastes (oil-based paints, pesticides, antifreeze, motor oil, batteries and fluorescent bulbs) must never be disposed of in or near watercourses. You may find your nearest household hazardous waste disposal site by calling (800) 304-2226 or on the web at www.rivcowm.org

- Report illegal grading or dumping in watercourses by contacting your City or County Code Enforcement Department, or call (800) 506-2555.

- Report a non-emergency crime such as dumping by contacting your City Police or County Sherriff’s Department, or call (800) 506-2555.
Clean and healthy creeks, rivers, lakes and streams are important to Riverside County. However, equestrian enthusiasts and common outdoor equestrian activities can lead to water pollution, if owners are not careful.

Horse waste and equestrian care products can be washed into streets and storm drains, when residents are not careful. Unlike sanitary sewers (from sinks and toilets), storm drains flow directly (untreated) to our creeks, rivers, lakes and streams.

You would never put animal waste or products into our creeks, river, lakes or streams, so don’t let them enter the storm drains. Follow these easy tips to help prevent water pollution while grooming or feeding horses, or constructing a stable.

Resources

Contact your city’s storm water representative for any applicable local ordinances.

For more information, please call the Riverside County’s “Only Rain Down the Storm Drain” 1-800-506-2555 or visit the website at www.rcflood.org

- Report a spill, an illegal storm drain disposal or clogged storm drains.
- Obtain pollution prevention information for Riverside County Residents, Businesses, Developers, Industries and Municipalities.
- Schedule pollution prevention education for adults, groups, or school presentations.
- Locate Household Hazardous Waste Collection Centers.

FOR SPILL EMERGENCIES, PLEASE CALL 911

Riverside County gratefully acknowledges the Orange County Storm Water Program for the information provided in this brochure.
Never allow horse waste or care products to enter the street or storm drain.

Grooming

- Use less-toxic alternatives for grooming. Even biodegradable products can be harmful to humans, marine life and the environment. Follow instructions on the products and clean up spills.
- When washing horses, either allow wash water to seep into the ground or wash in an area that is routed to the sanitary sewer. Do not let wash water enter the storm drain or any bodies of water.
- Conserve water by using a spray nozzle with an automatic shut-off. Turn off the water or kink the hose when not in use.

Pasture Management

- Horse holding areas should be swept or shoveled at least once per day. Never hose down these areas! The waste could end up in a stream or storm drain.
- Paddocks should be cleaned at least twice per week during the rainy season and once per week the rest of the year.

Grazing

- Establish healthy and vigorous pastures with at least three inches of leafy material.
- During rainfall, consider indoor feeding, a practice that keeps manure under a roof and away from runoff.

Collection and Storage

- Store animal waste in a sturdy, seepage-free unit that is enclosed or under cover.
- Line waste pits or trenches with an impermeable layer.
- Do not store manure on-site for more than one week.

Use and Disposal

- Compost soiled bedding and manure. See http://compostingcouncil.org for more information.
- Donate composted material to local greenhouses, nurseries and botanical parks.
- Transport manure to topsoil companies or composting centers.

Facility Design

- If you are constructing or re-building a stable, have your engineer check the County's website at www.ocwatersheds.com for information about facility design.

Remember, good land management protects horse health and water quality. A horse property that is managed well can also prevent disputes with neighbors, attract wildlife and make horse care more enjoyable.